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Abstract—This article focuses on synthesize new views from a
limited number of cameras, typically 2 to 4, using advanced image
fusion and perspective transformation techniques. Furthermore,
this work studies current methods of view synthesis in order
to identify their strengths and weaknesses in the context of a
limited number of input cameras. The main goal was to propose
an algorithm that will be optimized for efficient fusion of views
from a small number of cameras, while emphasizing the quality of
the resulting images, the speed of processing, and the scalability
of the solution. The proposed algorithm was then compared with
another existing method, that solves the mentioned problem. The
conclusion consists of evaluating the results of each method and
describing their strengths and weaknesses.
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I. INTRODUCTION

In recent decades, information technology has seen rapid
development. Modern digital images contain rich data useful
for applications like object detection, or view synthetis [1].
This visual information serves as the foundation for advanced
computer vision techniques. One promising area is Novel View
Synthesis (NVS), which generates new perspectives of a scene
from existing images by leveraging spatial relationships and
visual cues. Our paper implements an innovative perspective
on this topic while leveraging strengths of several traditional
methods [2], [3]. The paper is structured as follows: Section
II reviews related works; Section III introduces our proposed
method; Section IV discusses the experimental setup; Section
V analyzes the results; and Section VI concludes the paper.

II. NOVEL VIEW SYNTHESIS PROCESS

In general, the process of NVS from a set of images consists
of four consecutive steps:

1) Feature Matching - Extract and match visual elements
between input images to establish correspondence.

2) Camera Setup - Determine camera positions, orienta-
tions, and parameters for each input image.

3) Scene Reconstruction - Build a 3D representation of
the scene geometry from the matched features.

4) View Synthesis - Render new perspectives by projecting
the 3D scene from desired viewpoints with appropriate
texturing.
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III. COMPARED METHODS

This section explores two methods for synthetizing new
views:

A. Depth-Guided Frontal Face Synthesis

Reconstructs frontal faces by extracting depth-guided fore-
grounds from multiple viewpoints, aligning them using facial
landmarks, and blending facial regions. The method uses
MiDaS depth estimation and landmark-based alignment for
accurate feature correspondence.

B. 3D Gaussian Splatting

Represents scenes as 3D Gaussian primitives that are ef-
ficiently rendered through alpha-blended splatting, enabling
real-time novel view synthesis. Unlike NeRF, it achieves fast
rendering by rasterizing explicit Gaussians instead of neural
network queries [4].

IV. PROPOSED SOLUTION

The first method, Depth-Guided Multi-View Face Synthesis,
was implemented using the pretrained MiDaS (Multiple Depth
Estimation Accuracy with Single Network) neural network
for depth estimation [2]. This approach utilizes Dlib’s facial
landmark detector with a 68-point model for alignment and
custom region blending algorithms implemented with OpenCV
(Open Source Computer Vision) library. The second method,
3D Gaussian Splatting, was tested using the Jawset Postshot
software that enables rapid generation of photorealistic 3D
scenes through optimized neural radiance field training.

A. Depth-Guided Multi-View Face Synthesis

At the beginning of our algorithm, the set of images from
multiple views are read in color format and equalized. This is
an essential step for the quality of the following foreground
extraction.

1) Pre-Processing and depth map estimation: As part of the
preprocessing, it was necessary to modify the input images in
order to enhance their features. We applied adaptive histogram
equalization (CLAHE) to enhance the contrast in images
characterized by uneven lighting. The necessity of preprocess-
ing depends on the complexity of the scene; however, it is
generally regarded as a beneficial practice. For instance, the
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more complex real-world image illustrated in Figure 1 exhibits
a less detailed depth map, revealing noticeable artifacts.
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Figure 1. Example down view with respective color histogram and resulting
depth map.

Following the implementation of CLAHE, the histogram
depicted in Figure 2 exhibits a balanced distribution, leading
to a clearer representation of the resulting depth map.
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Figure 2. Example down view, color histogram and resulting depth map after
applying CLAHE.

It’s important to note that this color enhancing technique is
just a temporal step helping to create more precise foreground
extracting mask. To accurately depict the frontal perspective
of the scene with true-to-life colors, we will extract the
foreground from the original images rather than utilizing the
equalized versions.

2) Extracting Foreground: The subsequent phase of the
process involves the extraction of the foreground utilizing
the estimated depth map. Given that the depth map is not
inherently binary, it is essential to convert this image into a
binary format. The binary map is generated by employing the
formula 1.

binary_map = depth_map > threshV alue 1)

The formula implies that if the intensity value of a pixel in
the depth map is greater than a chosen threshold value, it is
stored as a value of 1 in the binary map. The result is a mask
composed of values [0,1]. By applying the cv.bitwise_and
operation, we can separate foreground area from the unwanted
background.
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Figure 3. Example of foreground extraction process for full set of images.

The final step is the application of this mask to the re-
spective image using AND operation. Figure 3 illustrates the
process of foreground extraction, showcasing an individual
in the foreground while the background is simultaneously
extracted.

3) Face alignment: The third step involves normalizing the
facial orientation across all four perspectives by identifying 68
facial landmarks through Dlib’s predictor. By calculating the
centers of the eyes and utilizing geometric transformations,
the images are aligned to a standardized target position at the
center of the image to correspond with the frontal view.

Figure 4. Example of face alignment process for full set of images.
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The standardization illustrated in Figure 4 guarantees uni-
form feature placement from various perspectives prior to
blending, with each face being adjusted through a methodical
application of rotation, scaling, and translation to ensure
accurate alignment according to eye coordinates.

4) Average face reconstruction: This phase synthesizes
a standardized frontal facial reference by warping aligned
faces to a common landmark configuration. A triangular mesh
was created using Delaunay triangulation based on average
landmarks. Affine transformations were applied to the triangles
of each input face, resulting in a consistent facial structure that
preserves features from all angles. On figure 5, we displayed
the individual stages of how the frontal face was created.
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(a) (b) ©

Figure 5. 5a displays the average landmarks, 5b representing the triangulated
average landmarks and 5c shows the synthetized frontal face.

5) Region-based blending: The final stage involves in-
tegrating facial features from multiple angles using multi-
scale blending techniques to merge aligned faces with the
average facial area. This includes creating masks for specific
regions of the foreground individual and aligning the features
with the frontal view. Frequency-based decomposition is used
to preserve details and ensure smooth transitions between
regions..

Figure 6. Synthetized frontal view using proposed method.

Figure 6 displays the final synthetized frontal view created
from four input images.

B. 3D Gaussian Splatting

This method represents a novel approach to volumetric ren-
dering in Jawset PostShot’s computational framework. Scenes
are parametrized via optimized 3D Gaussian primitives, en-
abling high-fidelity representation. It demonstrate significant
performance advantages over traditional mesh-based and voxel
methodologies. The implementation exhibits real-time render-
ing capabilities [5].

¥

Figure 7. Synthetized frontal view using 3DGS.

V. EXPERIMENT RESULTS

Two methodologies were assessed using two datasets. The
first dataset included Blender-designed scenes from IMICT
FEI STU, each showcasing unique scenarios affecting light
intensity and foreground/background variations, with a resolu-
tion of 1920x1080 pixels. The second dataset aimed to test the

methodologies’ limitations using real-world photographs taken
at 2k resolution with a smartphone. Results were evaluated
based on processing time and image similarity techniques,
compared to the reference frontal view.

A. First Dataset (Blender Scenes)

1) Proposed method: In all synthetic scenes, a camera shift
was applied alongside x and y axes. The results, as observed,
are nearly flawless. The algorithm effectively generated a
frontal perspective. In Figure 8, it is evident that employing a
highly detailed model in the foreground posed no issues.

(a) Base image

(b) Synthetized image

Figure 8. An example of a scene with high detailed model and result of
synthetization.

The second illustration in Figure 9 depicts a scenario in
which the clothing interacts with the neck region, resulting in
a ghosting effect due to imperfect treatment of the neck area
in the presence of the clothing.

X

) Q
(a) Base image

(b) Synthetized image

Figure 9. An example of a scene with clothing colliding with a neck area and
a result of synthetization.

2) Method using 3D Gaussian Splatting: The application
of Gaussian Splatting is anticipated to yield a high degree of
accuracy across various adverse conditions, regardless of the
simplicity or complexity of the scenes involved. Nevertheless,
it is projected that several hundred images will be necessary
to adequately depict a three-dimensional scene. Given our
constraints of limited camera availability and a low-resolution
background, this has led to the emergence of numerous pop-
ping artifacts.

(a) With background (b) Without background

Figure 10. Results of synthetization of the first scene using 3DGS

Figure 10 displays synthesized frontal views of the scene.
We tested input images with (Figure 10a) and without (Figure
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10b) background. The average similarity for the image with the
background was 0.5394. Removing the background decreased
popping artifacts and improved similarity by 0.24, resulting in
a new value of 0.7819.

The same phenomenon was observed in other scenes, with
highest average similarity reaching a value of 0.9513, with
an average training time of 15.6135 minutes. Additionally,
Figure 11 demonstrates a scenario where the clothing collided
with the neck region was also showing problems with popping
artefacts for the scene with background.

K2

(a) With background (b) Without background

Figure 11. Results of synthetization of the second scene using 3DGS.

Given that multiple training settings were tested, we ended
up with similar results for each set of images.

B. Second Dataset (Real Life Scenes)

1) Proposed method: In the course of evaluating this
method, we integrated an enhanced blending technique specif-
ically in the neck region. The reason for their inclusion was
that these images had some rotation to it, and it was necessary
to minimize its impact on the final result.

As we displayed on Figure 6, the final results were not
completely accurate when compared to the initial dataset. The
average processing duration recorded was 11.2566 seconds
across sixteen distinct scenes.

2) Method using 3D Gaussian Splatting: Applying 3DGS
on a second dataset, the situation was somewhat different
from the first. In these scenes, we were not able to accurately
represent a 3d model using only four images.

As illustrated in Figure 7, the outcomes derived from
the real-life dataset exhibited numerous artifacts. Despite our
attempts to adjust various training parameters, there was
no noticeable enhancement in the results. Even after nearly
doubling the number of Splats, the results remained largely
unchanged.

VI. COMPARISON OF RESULTS

The proposed method, enhanced through various modi-
fications for improved outcomes, demonstrates an average
execution duration of 11.2566 seconds for the initial dataset.
The overall average similarity score of 0.8442 is notably high,
especially given the time required to obtain this result. The
3DGS had an average execution time of 952.2843 seconds,
far surpassing the proposed method. Figure efgraphl compares
the similarity scores from each method across 16 scenes with
the background removed.

Average Similarity Metrics of the first dataset
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Figure 12. Graph of average similarity scores for the first dataset

By evaluating the results, we can conclude that our proposed
method performed better than the 3DGS in handling of these
scenarios. Our proposed method was approximately 12.82%
more successful. The average values are presented in Table 1.

Method Average runtime (s) | Average similarity
Disparity 11.2566 0.8442
3DGS 952.2843 0.7819

TABLE I. Results of similarity scores for proposed method and 3DGS.

Applying the methods to real scenes, our evaluation was
limited to comparing runtime and conducting a visual assess-
ment of the outcomes. In these cases, we were unable to eval-
uate similarity due to the absence of a reference frontal view..
Our findings indicate that the proposed method effectively
utilized data from four cameras, outperforming the 3DGS,
which necessitates significantly more information to achieve
high-quality results. Given the inability to utilize similarity
as a metric, we can regard the runtime of each method as
the primary parameter. In this context, the proposed method
demonstrates a significant increase in speed and requires less
computational resources.

VII. CONCLUSION AND FUTURE WORK

The analysis of the graphs and figures indicates that the
proposed method outperformed on the initial dataset and
demonstrated significantly faster processing times across both
datasets. Furthermore, it yielded more precise outcomes de-
spite the limited number of input images, although it is
restricted to synthesizing only the frontal view. While PostShot
offers a more straightforward setup, it necessitates a broader
scene coverage. As mentioned earlier, the result’s quantity is
more important in this case which our method sucessfully
demonstrated.

For future work, we intend to investigate the integration
of synthesizing various views of the scene while still relying
on just four images. Our proposed strategy includes the
introduction of input parameters to select dynamic viewpoint
angles. This opens up the possibility for possible use in real-
time video conferencing. By simulating physical co-presence
through synthesized arbitrary angles relative to participants,
our method aims to transform remote communication into
natural interactions that closely resemble in-person meetings.
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