
3D Scene Reconstruction Using Instant-NGP
(Instant Neural Graphics Primitives)

Jaroslav Venjarski, Michal Ivan Basoš, Matej Hromada1
1 Faculty of Electrical Engineering and Information Technology, STU Bratislava, Ilkovičová 3, 812 19 Bratislava, Slovakia

Institute of Multimedia Information and Communication Technologies, FEI STU
jaroslav.venjarski@stuba.sk

Abstract - Instant Neural Graphics Primitives (instant-ngp)
technology enables the rapid reconstruction of 3D scenes from 2D
images. This paper provides a practical guide to the installation,
configuration, and execution of the instant-NGP tool, focusing on
processing video inputs using the colmap2nerf.py script and the
main instant-ngp.exe application. The primary contribution of this
work is an experimental analysis of the impact of key data
preparation parameters such as video frame rate and scene
bounding box size, on processing speed and the final visual quality
of the 3D reconstruction. The results offer recommendations for
the optimal setting of these parameters depending on the nature of
the input video and the desired output.

Keywords - NeRF; instant-NGP; 3D scene reconstruction; novel
view synthesis; multi-resolution hash encoding; CUDA; GPU;
COLMAP; parameter configuration.

I. INTRODUCTION

The creation of detailed three-dimensional models of real-
world scenes and objects is a crucial task in numerous fields,
ranging from virtual and augmented reality, through robotics and
autonomous systems, to the digital preservation of cultural
heritage. Traditional 3D reconstruction methods often require
a compromise between processing speed and the visual quality
of the resulting model. Neural Radiance Fields (NeRF)
technology [1] brought a significant advancement in the quality
of novel view synthesis, albeit at the cost of extremely long
training times, which limited its practical deployment.

The Instant Neural Graphics Primitives (instant-ngp) project
[2], developed by NVIDIA, presents a solution to this issue. By
utilizing innovative techniques, particularly multi- resolution
hash encoding and a highly optimized implementation for
modern graphics processing units (GPUs) with CUDA support,
instant-ngp enables the training of NeRF models orders of
magnitude faster, within seconds to minutes, while maintaining
high visual quality.

This paper focuses on the practical aspects of using the
instant-ngp tool. The aim is to provide the reader with a
comprehensible guide covering the entire process, from the
installation of necessary tools and dependencies, through the
preparation of input data from video footage using the
colmap2nerf.py script and the COLMAP tool [4], to the
execution of training and visualization in the instant-
ngp.exe application. A key component of this paper is an
experimental analysis of the impact of two important data

preparation parameters: the frame rate extracted from the video
(-video_fps) and the defined scene size (-aabb_scale)
on the overall processing time and, crucially, on the visual
quality and detail of the resulting 3D reconstruction. Based on
these experiments, we formulate practical recommendations for
selecting these parameters.

II. OVERVIEW OF UTILIZED TECHNOLOGIES

The 3D scene reconstruction process using instant-ngp in-
volves the interplay of several key technologies and tools. This
chapter provides a brief overview of their roles within the entire
workflow:

• Instant-NGP (instant-ngp.exe): Represents the
core of the entire system. It is a software tool from
NVIDIA that implements rapid training and rendering
of neural scenes. It utilizes an implicit scene
representation and is highly optimized for GPU
execution using CUDA. It provides an interactive
graphical user inter- face for visualizing and controlling
the training process, as well as options for exporting
results.

• NeRF (Neural Radiance Fields) [1]: This is the funda-
mental concept upon which instant-ngp is built. Instead
of traditional explicit geometry (e.g., polygons), NeRF
represents a scene using a neural network (MLP) that
learns to map 3D coordinates and viewing directions to
color and density. This enables highly realistic
rendering of novel views.

• Multi-resolution Hash Encoding & Tiny CUDA NN:
These are the key technologies responsible for the
dramatic speed-up of instant-ngp compared to the
original NeRF. Hash encoding efficiently encodes
input 3D coordinates using multiple levels of detail and
small, quickly accessible hash tables. Tiny CUDA NN
is an NVIDIA library providing extremely optimized
implementations of these hash tables and small MLP
net- works directly for the GPU.

• colmap2nerf.py: A Python script for data
preparation, which calls FFmpeg and COLMAP.

• FFmpeg: A tool for extracting frames from video.

• COLMAP [4]: An external, open-source software for

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 19

Structure from Motion (SfM). In the context of instant-
ngp, its SfM functionality is primarily used to
automatically estimate camera intrinsic and extrinsic
parameters (camera poses) from a set of input 2D images.
These poses are essential for training the NeRF model.

• C++/CUDA, Python, CMake: These are the languages
and tools used for development and compilation.

III. REQUIREMENTS AND ENVIRONMENT SETUP
Successful execution of instant-ngp requires a specific hard-

ware and software configuration.

A. Hardware and Software Requirements
Basic requirements include:

• NVIDIA GPU: Turing/Ampere/Ada architecture
recommended (Maxwell minimum), with at least 8GB
VRAM (4GB minimum).

• OS: Windows 10/11 (64-bit).

• NVIDIA CUDA Toolkit: Compatible version (e.g.,
11.6+).

• Microsoft Visual Studio: 2019 or newer (with C++
components).

• CMake: Version 3.21+.

• Python: Version 3.7+.

• Git.

• COLMAP (binaries).

• FFmpeg (binaries).

• (Recommended: Anaconda/Miniconda).

The project must be compiled according to the official docu-
mentation [2] before use.

IV. DATA PREPARATION AND TRAINING EXECUTION
This section describes the basic steps for video processing

and running instant-ngp.

A. Video Processing using colmap2nerf.py
The colmap2nerf.py script automates data preparation

from video: it extracts frames (via FFmpeg), estimates camera
poses (via COLMAP), and generates the necessary
transforms.json file. Key command-line parameters
include:

• -video_in: Path to the video.

• -video_fps: Number of frames extracted per second
(impact analyzed in Section V.B).

• -run_colmap: Executes COLMAP.

• -aabb_scale: Scene size (impact analyzed in Sec-
tion V.C).

• -colmap_matcher: COLMAP’s feature matching
method (e.g., exhaustive, sequential).

Example for video processing:

Figure 1. Video processing.

B. Launching Training and Visualization with
instant-ngp.exe
After generating transforms.json, training is initiated

with the command:

Figure 2. Starting training.

The application loads the data and displays the training
progress in an interactive GUI window, allowing scene
navigation and parameter adjustment.

C. Exporting the 3D Model (Mesh)
Once a satisfactory NeRF model has been trained,

instant-ngp.exe allows for the extraction of its geometry
as a 3D mesh. This is typically done via the graphical user
interface, often under a section labeled "Export mesh / volume
/ slices" by clicking a button such as "Mesh it!". The resulting
mesh, commonly in .obj format, can then be imported into 3D
modeling software like Blender for further editing, texturing, or
preparation for 3D printing. Figure 1 shows an example of such
an exported mesh, visualizing the reconstructed geometry.

Figure 3. Example of an exported 3D mesh from a scene reconstructed with

instant-ngp, visualized with normal map colors.

python scripts/colmap2nerf.py --video_in
<path/to/video.mp4> --video_fps 2 --run_colmap
--aabb_scale 8 --overwrite

.\instant-ngp.exe --scene <path/to/project>

20 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

V. ANALYSIS OF PARAMETER IMPACT
We experimentally analyzed how the -video_fps and -
aabb_scale parameters affect 3D reconstruction quality
using a 4K handheld orbital shot (60fps, 46 seconds). The
footage features a single subject centered in an outdoor
environment, captured in one continuous 360° circuit with
consistent camera distance and smooth movement throughout.
All processing was performed on an NVIDIA GeForce RTX
4070 GPU.

A. Experimental Methodology

For various values of -video_fps (e.g., [2, 4, 8]) and -
aabb_scale (e.g., [4, 8, 16]), we measured the data
preparation time (colmap2nerf.py) and subjectively
assessed the visual quality of the resulting reconstruction in
instant-ngp.exe.

B. Impact of the -video_fps Parameter

Lower FPS (e.g., 2) significantly accelerated data preparation
(COLMAP execution) but could lead to incomplete
reconstruction with rapid camera movement. Higher FPS (e.g.,
4 or 8) improved pose estimation robustness and slightly
enhanced model quality, at the cost of considerably longer
preparation time. Visual comparisons further illustrate these
trade-offs.

C. Impact of the -aabb_scale Parameter

The choice of -aabb_scale affected the scene’s extent and
detail. Lower values (e.g., 4 or 8) were suitable for scenes with
a limited extent or for focusing on a specific object, providing
better detail in that area. Higher values (e.g., 16) captured a
larger space but could lead to a loss of detail if the primary
subject was small within that volume. A value too small resulted
in scene cropping.

Figure 4. Visual result of reconstruction with -aabb_scale=16.

Figure 5. Visual result of reconstruction with -aabb_scale=8.

Figure 6. Visual result of reconstruction with -aabb_scale=4.

Figure 7. Visual result of reconstruction with -

aabb_scale=4 (full scale, unedited).

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 21

Figure 8. Visual result of reconstruction with -

aabb_scale=16 (full scale, unedited).

D. Summary of Results
Parameter selection involves a trade-off. Lower FPS is

preferable for preparation speed, while higher FPS is better for
robustness. -aabb_scale should be chosen according to the
scene size – smaller for objects, larger for extensive scenes.

VI. CONCLUSION
This paper provided a practical overview of using the instant-

ngp tool for reconstructing 3D scenes from video inputs, from
installing the necessary components to running training and
visualization. A key contribution was the analysis of the impact
of the -video_fps and -aabb_scale pa- rameters of the
colmap2nerf.py script on the resulting process. Our
experiments confirmed that the choice of these parameters
represents an important compromise. A lower -
video_fps value (e.g., 2) significantly reduces the data
preparation time (especially COLMAP execution), but with
rapid camera movement, it can lead to a less robust or in-
complete reconstruction. Higher FPS increases robustness but
at the cost of longer processing time. The -aabb_scale
parameter must be adapted to the size and type of the scene –
too small a value will crop the scene, while too large a value
can reduce the detail of the reconstruction in the area of interest.

Based on our observations, we recommend starting
with -video_fps=2 or -video_fps=4 and

-aabb_scale=8 or -aabb_scale=16 for typical
handheld videos. These values can then be fine-tuned according

to the specifics of the particular video and the requirements for
the final quality and speed.

Instant-ngp proves to be a powerful and relatively user-
friendly tool for the rapid creation of photorealistic 3D models.
However, understanding the impact of key data preparation
parameters is essential for achieving optimal results.

ACKNOWLEDGEMENT
Research in this paper was supported by projects DISIC

(09I05-03-V02-00077), InteRViR (VEGA 1/0605/23), and
NEXT (ERASMUS-EDU-2023-CBHE-STRAND-2, ID:
101129022).

REFERENCES
[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,

and R. Ng, "NeRF: Representing Scenes as Neu- ral Radiance Fields for
View Synthesis," in Proc. European Conf. Comput. Vis. (ECCV),
Glasgow, UK, 2020, pp. 405– 421.

[2] T. Müller, A. Evans, C. Schied, and A. Keller, "Instant Neural Graphics
Primitives with a Multiresolution Hash Encoding," ACM Trans. Graph.,
vol. 41, no. 4, Art. no. 102, July 2022.

[3] J. Venjarski, Ľ. Likó, Š. Tibenský, M. Vančo, and G. Rozinaj, "Keypoint-
Based Foreground-Background Image Segmentation," in Proc. 66th
International Symposium ELMAR-2024, Zadar, Croatia, 2024, pp. 113–
116.

[4] J. L. Schönberger and J. M. Frahm, "Structure-from-Motion Revisited,"
in Proc. IEEE Conf. Comput. Vis. Pattern Recog- nit. (CVPR), Las Vegas,
NV, USA, 2016, pp. 4104–4113.

[5] NVIDIA Developer Blog, "Getting Started with NVIDIA Instant NeRFs,"
[Online]. Available: https://developer.nvidia.com/blog/getting-started-
with-nvidia-instant-nerfs/

[6] NVlabs, "instant-ngp," GitHub Repository, [Online]. Avail- able:
https://github.com/NVlabs/instant-ngp

[7] bycloudai, "instant-ngp-Windows," GitHub Repository, [On- line].
Available: https://github.com/bycloudai/ instant-ngp-
Windows?tab=readme-ov-file

[8] NVIDIA, "CUDA Toolkit," [Online]. Available: https://
developer.nvidia.com/cuda-downloads

[9] Microsoft, "Visual Studio Downloads," [Online]. Avail- able:
https://visualstudio.microsoft.com/ downloads/

[10] Anaconda, "Anaconda Distribution," [Online]. Available:
https://www.anaconda.com/download

[11] CMake, "Download CMake," [Online]. Available:
https://cmake.org/download/

[12] COLMAP, "Release 3.7," GitHub Release, [Online]. Available:
https://github.com/colmap/colmap/ releases/tag/3.7

[13] javieryu, "nerf_bridge," GitHub Repository, [Online]. Available:
https://github.com/javieryu/nerf_ bridge

22 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

