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Abstract - Digital life has become an everyday reality, and life 
without it is almost unimaginable. Digitalization has significantly 
advanced humanity, improving quality of life, extending lifespans 
through medical innovations, and offering entertainment such as 
watching films or playing video games. This paper examines the 
digitalization of physical objects and environments, using various 
photo-based algorithms and digital model creation software. 
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I.  INTRODUCTION  
The digital reconstruction of physical environments and 

objects has a long-standing presence in computer graphics and 
3D modeling. In the early days, digital models were manually 
created using specialized software, which required time, 
precision, and expert knowledge. Over time, the field has 
evolved significantly, giving rise to more automated and 
intelligent methods. 

One widely adopted approach is photogrammetry, which 
generates 3D models from a series of photographs taken around 
a real-world object or space. This technique relies on identifying 
and triangulating common features across multiple images to 
build a spatially accurate representation. While effective, 
photogrammetry can produce incomplete or distorted results in 
challenging lighting or texture conditions, often requiring 
manual correction. 

A significant shift occurred with the emergence of Neural 
Radiance Fields (NeRF) in 2020. NeRF leverages neural 
networks to create photorealistic 3D scenes from 2D images, 
capturing complex visual effects such as reflections, shadows, 
and fine textures with impressive accuracy. This advancement 
triggered a surge in AI-driven 3D reconstruction research, 
leading to new tools and techniques [1]. 

Among the latest developments is Gaussian Splatting, a 
method that represents 3D scenes using a cloud of Gaussian 
primitives. Unlike mesh-based or voxel-based systems, 
Gaussian Splatting offers a real-time, high-fidelity rendering 
pipeline, balancing quality and performance. It has quickly 
gained attention for its effectiveness in rendering dynamic and 
detailed environments. 

This paper focuses on comparing various image-based 
modeling algorithms applied to the reconstruction of a single 
indoor room. The comparison is performed using the Gaussian 
Classic software, which provides a practical platform for 
evaluating the strengths and limitations of each approach. The 
goal is not only to observe the differences in the generated 
models but also to assess their efficiency and visual fidelity. A 

more detailed analysis of the methods and results will be 
presented in the following chapters. 

II. GAUSSIAN SPLATTING TECHNIQUE 
Gaussian Splatting begins with digital photographs of a 

scene or object as the primary input. After capturing and 
uploading the images to a computer, the first essential step is the 
application of the Structure from Motion (SfM) technique. SfM 
analyzes the image set, generates a point cloud, and accurately 
estimates the positions of the cameras from which the photos 
were taken. 

Gaussians are represented as three-dimensional ellipsoids, 
with each Gaussian described by several parameters: 

• Position – the 3D coordinates (x, y, z) of the point in 
space. 

• Covariance – mathematically defines the size, shape, 
and orientation of the ellipsoid. 

• Color – defined using RGB values, determining the 
appearance of each point. 

• Opacity – controls the transparency or opacity of the 
Gaussian. 

• Scale – describes the physical size of the ellipsoid in 3D 
space. 

The total number of Gaussians depends largely on the 
complexity of the scene or object being modeled, often reaching 
millions of points in detailed reconstructions. Initially, during 
the early stages of training, these Gaussians appear as large, 
rough ellipsoids and do not yet provide a detailed representation 
of the scene. 

To improve model quality, the system enters a training phase 
based on feedback optimization. During this phase, the current 
3D representation is projected back into the 2D image space and 
compared against the original photographs. The software then 
identifies discrepancies between the rendered view and the 
actual photos. Using this feedback, the system adjusts the 
parameters of the Gaussians, gradually enhancing the detail and 
realism of the reconstructed scene.  

The optimization process involves two key strategies: 

• Underrepresented areas – If a region lacks sufficient 
detail, the software duplicates the corresponding 
Gaussian and introduces more points to better represent 
the details. 
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• Overrepresented areas – If a region is overly dense with 
Gaussians, the software splits or reduces the influence 
of those Gaussians to increase accuracy and reduce 
visual redundancy. 

This iterative training process occurs over many cycles. In 
each iteration, the parameters of the Gaussians are refined to 
bring the model closer to a photorealistic result. The number of 
iterations required varies with the complexity of the scene. 
However, on average, around 30,000 iterations are needed to 
achieve convergence—the point at which further iterations no 
longer result in significant visual improvements [2]. 

III. CAMERA LAYOUT ALGORITHMS, DATASET 
Accurate and efficient camera placement is crucial for high-

quality 3D reconstruction using image-based methods. We 
explore five distinct camera placement strategies employed in 
the study: the Hemisphere Algorithm, Random Placement, 
Original Algorithm, an algorithm made by a colleague. 

The Hemisphere Algorithm involves positioning cameras 
uniformly along a hemispherical surface within the room. This 
setup ensures comprehensive coverage from above, capturing 
the scene from a wide range of angles. It's particularly effective 
for scenes where overhead views provide significant structural 
information. 

Original Algorithm proposes an algorithm that efficiently 
and progressively suggests the next best camera placement to 
maximize reconstruction quality. They introduce two key 
metrics, computed on a discretized 3D grid within a user-defined 
bounding box: 

1) Observation Frequency:  How often a point in the 
volume is observed by the current set of cameras. 

2) Angular Uniformity: For each point, this measures how 
uniformly the viewing directions of observing cameras are 
distributed, compared to an ideal uniform angular distribution. 
It's calculated using the Total Variation distance between the 
empirical and uniform distributions. 

A reconstruction quality score is defined by combining these 
two metrics for all points in the discretized volume. The goal is 
to maximize this score. 

The greedy algorithm helps to bring it together. It samples a 
set of candidate camera poses in free space. It evaluates which 
candidate camera, if added to the existing set, would yield the 
largest increase in the reconstruction quality score. The "best" 
camera is chosen, an image is captured, and the dataset is 
updated. This process repeats until a camera budget is met [3]. 

In the Random Placement strategy, cameras are distributed 
randomly throughout the room. This method introduces 
variability in viewpoints, which can be beneficial for capturing 
diverse perspectives. However, the lack of structured placement 
may lead to uneven coverage and potential gaps in the 
reconstructed model. 

The Tibonachi algorithm is based on the Original Algorithm 
and adds the following improvements to its operation:  

• Coroutine support to spread computations across 
multiple frames for smooth real-time performance 

• Configurable additional observation points to further 
boost spatial coverage. 

• Partial grid sampling to reduce computational overhead 

• Strict enforcement of minimum separation between 
points 

These enhancements yield faster convergence, more 
balanced view distributions, and improved 3D reconstruction 
quality. 

In the study, a total of 36 datasets were utilized to evaluate 
the performance of different camera placement algorithms in 3D 
scene reconstruction. The datasets were distributed evenly 
across the five algorithms, with each algorithm tested using nine 
distinct datasets. These datasets were categorized based on the 
number of input photographs used for reconstruction. The image 
count increased progressively, starting from 20 photos and 
increasing by increments of 10, up to 100 photos. This 
systematic grouping—ranging from sparse to dense image 
coverage—allowed for consistent performance comparison and 
detailed analysis of how each algorithm responds to varying 
levels of visual information. 

All datasets were generated using virtual camera placements 
within a digitally created 3D room designed in a computer 
environment. This approach allowed precise control over 
camera positions and scene conditions, ensuring consistency 
across all tests. The synthetic nature of the room ensured 
reproducibility and eliminated real-world noise, making it ideal 
for isolating and analyzing the performance of the camera 
placement algorithms. 

IV. PREREQUISITES 
The developers of Gaussian Splatting have provided an 

application that greatly simplifies the process of generating 3D 
models. However, using this tool requires several pre-installed 
components and meeting specific hardware and software 
requirements. 

Hardware Requirements are a GPU with CUDA support and 
a compute capability of 7.0 or higher ; at least 24 GB of VRAM. 

Software Requirements are a C++ compiler compatible with 
PyTorch extensions; CUDA SDK 11, required for building 
PyTorch extensions; compatibility between the C++ compiler 
and the installed CUDA SDK; Conda, which is not mandatory 
but highly recommended as it simplifies the environment setup. 

The application runs entirely through a command-line 
interface (CLI). However, once a model has been generated, it 
can be viewed in a dedicated viewer built on the SIBR 
framework. The latest major update to the software was released 
in October 2024, and the full application is available for 
download on GitHub for free [4]. 

V. WORKFLOW 
After the all the necessary components are successfully 

installed for Gaussian Splatting and the photographs have 
already been transferred to the computer, the model making 
process can begin. 
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Inside the gaussian-splatting directory—which contains 
several files and subfolders—only certain items are relevant for 
this workflow. Inside the data directory, create a new folder and 
within it, create a subfolder named input. Place all the captured 
photographs into this input subfolder. 

Run Anaconda Prompt and enter the following commands: 

1) conda activate gaussian_splatting - This command 
activates the gaussian_splatting Conda environment, ensuring 
that Python and all required dependencies are available. 

2) cd gaussian-splatting - changes the working directory to 
the root folder of the Gaussian Splatting project. 

3) python convert.py -s <path> - processes the input 
photographs and converts them into a format suitable for model 
generation. The duration of this step depends on the number and 
quality of the photos but typically takes less than 5 minutes. 

4) python train.py -s <path> -m <path> --data_device cpu 
--iterations 30000 - This command starts the training process 
and performs multiple operations simultaneously: 

• -s <path> -  specifies the input folder with photographs 

• -m <path> -  sets the output folder where the final model 
will be saved. If not specified, the model will be saved 
under a randomly generated name in the output folder 

• --data_device cpu - forces the training to run on the CPU 
(optional if a GPU is available) 

• --iterations 30000 - defines the number of training 
iterations 

The total training time depends on the number of iterations 
and the size of the input data. For 30,000 iterations, the process 
typically takes about 8 minutes. If a higher number of iterations 
is used, the program automatically creates checkpoints during 
training—saving intermediate versions of the model every 25% 
of the total iterations. For instance, with 30,000 iterations, a 
checkpoint at 7,000 iterations will also be available. 

VI. EVALUATION 
There are multiple ways to evaluate the quality of a 3D 

model. While visual inspection can often reveal which model 
appears more realistic, a professional and objective comparison 
requires the use of standardized evaluation metrics. These 
metrics can be computed once the model generation process is 
complete. 

One of the fundamental metrics related to accuracy is the 
Mean Squared Error (MSE). Although MSE is not typically 
reported as a final evaluation value, it serves as the basis for 
several other important quality indicators. An MSE value of zero 
indicates perfect prediction accuracy, while higher values reflect 
a greater discrepancy between predicted and reference data. 
MSE is calculated using the following formula: 

𝑀𝑆𝐸 =	
∑(𝑦! − ŷ!)"

𝑛  (1)  

Where yi is true value, ŷi is the predicted value, and n is the 
number of data points. Squaring the differences ensures that all 
errors are positive, making the MSE value always non-negative 
[5]. 

A widely used metric is the Peak Signal-to-Noise Ratio 
(PSNR), which assesses the fidelity of an image by comparing 
the original input image to the reconstructed or processed 
version. PSNR measures the level of noise or error between the 
two images and is expressed in decibels (dB). A higher PSNR 
value indicates that the processed image is more similar to the 
original and thus of higher quality. Importantly, the original and 
processed images must be of the same resolution for PSNR to be 
computed [6]. The PSNR formula is as follows: 

𝑃𝑆𝑁𝑅 =	10	𝑙𝑜𝑔#$	
(𝐿 − 1)"

1
𝑁"∑ ∑ (Î(𝑟, 𝑐) − 𝐼(𝑟, 𝑐))"&'#

()$
&'#
*)$

   (2) 

Where L is the maximum possible pixel value (for 8-bit 
images, 𝐿=256), N x N is the total number of pixels in the image, 
I (r, c) is the original image pixel value at row r and column c, Î 
(r, c) is the corresponding pixel value in the processed image. 

The following tables are organized by the algorithms. Each 
test was run with 30,000 iterations. In the row beneath the title, 
can be found the number of images used in each dataset. The 
next row shows the number of cameras accepted by the 
program—these are the cameras that were successfully 
connected and used to generate the digital model. The final row 
presents the evaluation results of each model, represented by the 
corresponding PSNR values. In some places in the table, dashes 
appear. These indicate that the program was unable to align the 
images, and therefore could not generate a digital model from 
them. 

 

TABLE I.  EVALUATION OF THE DATASETS 

Hemisphere 
Input 

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic 

Detected 
cameras 18 30 40 50 60 70 80 90 100 
PSNR 
[dB] 25.152 27.019 28.888 28.575 29.653 30.868 30.636 33.377 33.287 

Original Algorithm 
Input 

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic 

Detected 
cameras 12 27 34 43 43 62 59 76 85 

PSNR[dB] 23.702 26.398 27.588 28.284 29.365 29.728 30.181 30.460 30.595 
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Random 
Input 

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic 

Detected 
cameras - - - - 14 21 54 63 53 
PSNR 
[dB] - - - - 23.430 26.681 26.032 24.659 27.177 

Tibonachi 
Input 

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic 

Detected 
cameras 16 21 24 31 36 47 51 58 69 
PSNR 
[dB] 24.991 25.396 26.739 27.811 29.487 28.015 27.580 27.022 29.298 

 

VII. OBSERVATIONS 
In nearly all algorithms, increasing the number of input 

images generally leads to a higher PSNR, suggesting improved 
model quality with more data. 

The Hemisphere dataset consistently achieves the highest 
PSNR values across nearly all picture counts. It also exhibits a 
very high camera acceptance rate, often utilizing 100% or close 
to 100% of the input pictures 

The Original Algorithm generally performs better than 
Random and Tibonachi, but consistently lags the Hemisphere 
dataset in PSNR. Its camera acceptance rate is moderate, lower 
than Hemisphere. 

The Random algorithm performs significantly worse than 
the others, particularly in the lower image-count datasets where 
it fails to connect any cameras at all (20–50 images). Even in the 
higher datasets, its PSNR values remain consistently lower, 
reflecting the importance of structured camera placement in 
achieving high model quality. 

The Tibonachi algorithm shows very strong early 
performance, outperforming even Hemisphere at 20, 30, and 40 
images. Its performance increases steadily and peaks at 29.487 
(60 images), after which it stabilizes with mild fluctuations. This 
makes it a viable choice when dealing with fewer images, due to 
its efficient camera distribution. 

 There is a clear correlation between the number of cameras 
successfully used and the PSNR results. Algorithms like 
Hemisphere and Original maintain a 1:1 camera-to-image ratio, 
or close to it, while Random suffers from lower camera 
utilization, impacting its output quality. 

VIII. FUTURE WORK 
In the future, this study could be expanded by including 

additional camera placement algorithms that were not covered 
in this paper. The scope of the research can also be broadened in 
other directions. For instance, beyond Gaussian Splatting, 
similar 3D reconstruction technologies could be incorporated 
and compared. Another possibility is to test alternative software 
solutions specifically designed for generating Gaussian 
Splatting models, which may offer different features, 
performance, or quality. These extensions could provide a more 
comprehensive understanding of the strengths and limitations of 
various approaches in photogrammetric 3D modeling. 
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