
Evaluation of Camera Topologies on Output Quality
in Gaussian Splatting
Florián Jurík, Marek Vančo, Šimon Tibenský

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
jurik.florian@gmail.com, marek_vanco@stuba.sk, simon.tibensky@stuba.sk

Abstract - Digital life has become an everyday reality, and life
without it is almost unimaginable. Digitalization has significantly
advanced humanity, improving quality of life, extending lifespans
through medical innovations, and offering entertainment such as
watching films or playing video games. This paper examines the
digitalization of physical objects and environments, using various
photo-based algorithms and digital model creation software.

Keywords – Gaussian Splatting, PSNR, Camera topology

I. INTRODUCTION
The digital reconstruction of physical environments and

objects has a long-standing presence in computer graphics and
3D modeling. In the early days, digital models were manually
created using specialized software, which required time,
precision, and expert knowledge. Over time, the field has
evolved significantly, giving rise to more automated and
intelligent methods.

One widely adopted approach is photogrammetry, which
generates 3D models from a series of photographs taken around
a real-world object or space. This technique relies on identifying
and triangulating common features across multiple images to
build a spatially accurate representation. While effective,
photogrammetry can produce incomplete or distorted results in
challenging lighting or texture conditions, often requiring
manual correction.

A significant shift occurred with the emergence of Neural
Radiance Fields (NeRF) in 2020. NeRF leverages neural
networks to create photorealistic 3D scenes from 2D images,
capturing complex visual effects such as reflections, shadows,
and fine textures with impressive accuracy. This advancement
triggered a surge in AI-driven 3D reconstruction research,
leading to new tools and techniques [1].

Among the latest developments is Gaussian Splatting, a
method that represents 3D scenes using a cloud of Gaussian
primitives. Unlike mesh-based or voxel-based systems,
Gaussian Splatting offers a real-time, high-fidelity rendering
pipeline, balancing quality and performance. It has quickly
gained attention for its effectiveness in rendering dynamic and
detailed environments.

This paper focuses on comparing various image-based
modeling algorithms applied to the reconstruction of a single
indoor room. The comparison is performed using the Gaussian
Classic software, which provides a practical platform for
evaluating the strengths and limitations of each approach. The
goal is not only to observe the differences in the generated
models but also to assess their efficiency and visual fidelity. A

more detailed analysis of the methods and results will be
presented in the following chapters.

II. GAUSSIAN SPLATTING TECHNIQUE
Gaussian Splatting begins with digital photographs of a

scene or object as the primary input. After capturing and
uploading the images to a computer, the first essential step is the
application of the Structure from Motion (SfM) technique. SfM
analyzes the image set, generates a point cloud, and accurately
estimates the positions of the cameras from which the photos
were taken.

Gaussians are represented as three-dimensional ellipsoids,
with each Gaussian described by several parameters:

• Position – the 3D coordinates (x, y, z) of the point in
space.

• Covariance – mathematically defines the size, shape,
and orientation of the ellipsoid.

• Color – defined using RGB values, determining the
appearance of each point.

• Opacity – controls the transparency or opacity of the
Gaussian.

• Scale – describes the physical size of the ellipsoid in 3D
space.

The total number of Gaussians depends largely on the
complexity of the scene or object being modeled, often reaching
millions of points in detailed reconstructions. Initially, during
the early stages of training, these Gaussians appear as large,
rough ellipsoids and do not yet provide a detailed representation
of the scene.

To improve model quality, the system enters a training phase
based on feedback optimization. During this phase, the current
3D representation is projected back into the 2D image space and
compared against the original photographs. The software then
identifies discrepancies between the rendered view and the
actual photos. Using this feedback, the system adjusts the
parameters of the Gaussians, gradually enhancing the detail and
realism of the reconstructed scene.

The optimization process involves two key strategies:

• Underrepresented areas – If a region lacks sufficient
detail, the software duplicates the corresponding
Gaussian and introduces more points to better represent
the details.

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 33

mailto:jurik.florian@gmail.com
mailto:marek_vanco@stuba.sk
mailto:simon.tibensky@stuba.sk
mailto:jurik.florian@gmail.com
mailto:marek_vanco@stuba.sk
mailto:simon.tibensky@stuba.sk

• Overrepresented areas – If a region is overly dense with
Gaussians, the software splits or reduces the influence
of those Gaussians to increase accuracy and reduce
visual redundancy.

This iterative training process occurs over many cycles. In
each iteration, the parameters of the Gaussians are refined to
bring the model closer to a photorealistic result. The number of
iterations required varies with the complexity of the scene.
However, on average, around 30,000 iterations are needed to
achieve convergence—the point at which further iterations no
longer result in significant visual improvements [2].

III. CAMERA LAYOUT ALGORITHMS, DATASET
Accurate and efficient camera placement is crucial for high-

quality 3D reconstruction using image-based methods. We
explore five distinct camera placement strategies employed in
the study: the Hemisphere Algorithm, Random Placement,
Original Algorithm, an algorithm made by a colleague.

The Hemisphere Algorithm involves positioning cameras
uniformly along a hemispherical surface within the room. This
setup ensures comprehensive coverage from above, capturing
the scene from a wide range of angles. It's particularly effective
for scenes where overhead views provide significant structural
information.

Original Algorithm proposes an algorithm that efficiently
and progressively suggests the next best camera placement to
maximize reconstruction quality. They introduce two key
metrics, computed on a discretized 3D grid within a user-defined
bounding box:

1) Observation Frequency: How often a point in the
volume is observed by the current set of cameras.

2) Angular Uniformity: For each point, this measures how
uniformly the viewing directions of observing cameras are
distributed, compared to an ideal uniform angular distribution.
It's calculated using the Total Variation distance between the
empirical and uniform distributions.

A reconstruction quality score is defined by combining these
two metrics for all points in the discretized volume. The goal is
to maximize this score.

The greedy algorithm helps to bring it together. It samples a
set of candidate camera poses in free space. It evaluates which
candidate camera, if added to the existing set, would yield the
largest increase in the reconstruction quality score. The "best"
camera is chosen, an image is captured, and the dataset is
updated. This process repeats until a camera budget is met [3].

In the Random Placement strategy, cameras are distributed
randomly throughout the room. This method introduces
variability in viewpoints, which can be beneficial for capturing
diverse perspectives. However, the lack of structured placement
may lead to uneven coverage and potential gaps in the
reconstructed model.

The Tibonachi algorithm is based on the Original Algorithm
and adds the following improvements to its operation:

• Coroutine support to spread computations across
multiple frames for smooth real-time performance

• Configurable additional observation points to further
boost spatial coverage.

• Partial grid sampling to reduce computational overhead

• Strict enforcement of minimum separation between
points

These enhancements yield faster convergence, more
balanced view distributions, and improved 3D reconstruction
quality.

In the study, a total of 36 datasets were utilized to evaluate
the performance of different camera placement algorithms in 3D
scene reconstruction. The datasets were distributed evenly
across the five algorithms, with each algorithm tested using nine
distinct datasets. These datasets were categorized based on the
number of input photographs used for reconstruction. The image
count increased progressively, starting from 20 photos and
increasing by increments of 10, up to 100 photos. This
systematic grouping—ranging from sparse to dense image
coverage—allowed for consistent performance comparison and
detailed analysis of how each algorithm responds to varying
levels of visual information.

All datasets were generated using virtual camera placements
within a digitally created 3D room designed in a computer
environment. This approach allowed precise control over
camera positions and scene conditions, ensuring consistency
across all tests. The synthetic nature of the room ensured
reproducibility and eliminated real-world noise, making it ideal
for isolating and analyzing the performance of the camera
placement algorithms.

IV. PREREQUISITES
The developers of Gaussian Splatting have provided an

application that greatly simplifies the process of generating 3D
models. However, using this tool requires several pre-installed
components and meeting specific hardware and software
requirements.

Hardware Requirements are a GPU with CUDA support and
a compute capability of 7.0 or higher ; at least 24 GB of VRAM.

Software Requirements are a C++ compiler compatible with
PyTorch extensions; CUDA SDK 11, required for building
PyTorch extensions; compatibility between the C++ compiler
and the installed CUDA SDK; Conda, which is not mandatory
but highly recommended as it simplifies the environment setup.

The application runs entirely through a command-line
interface (CLI). However, once a model has been generated, it
can be viewed in a dedicated viewer built on the SIBR
framework. The latest major update to the software was released
in October 2024, and the full application is available for
download on GitHub for free [4].

V. WORKFLOW
After the all the necessary components are successfully

installed for Gaussian Splatting and the photographs have
already been transferred to the computer, the model making
process can begin.

34 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

Inside the gaussian-splatting directory—which contains
several files and subfolders—only certain items are relevant for
this workflow. Inside the data directory, create a new folder and
within it, create a subfolder named input. Place all the captured
photographs into this input subfolder.

Run Anaconda Prompt and enter the following commands:

1) conda activate gaussian_splatting - This command
activates the gaussian_splatting Conda environment, ensuring
that Python and all required dependencies are available.

2) cd gaussian-splatting - changes the working directory to
the root folder of the Gaussian Splatting project.

3) python convert.py -s <path> - processes the input
photographs and converts them into a format suitable for model
generation. The duration of this step depends on the number and
quality of the photos but typically takes less than 5 minutes.

4) python train.py -s <path> -m <path> --data_device cpu
--iterations 30000 - This command starts the training process
and performs multiple operations simultaneously:

• -s <path> - specifies the input folder with photographs

• -m <path> - sets the output folder where the final model
will be saved. If not specified, the model will be saved
under a randomly generated name in the output folder

• --data_device cpu - forces the training to run on the CPU
(optional if a GPU is available)

• --iterations 30000 - defines the number of training
iterations

The total training time depends on the number of iterations
and the size of the input data. For 30,000 iterations, the process
typically takes about 8 minutes. If a higher number of iterations
is used, the program automatically creates checkpoints during
training—saving intermediate versions of the model every 25%
of the total iterations. For instance, with 30,000 iterations, a
checkpoint at 7,000 iterations will also be available.

VI. EVALUATION
There are multiple ways to evaluate the quality of a 3D

model. While visual inspection can often reveal which model
appears more realistic, a professional and objective comparison
requires the use of standardized evaluation metrics. These
metrics can be computed once the model generation process is
complete.

One of the fundamental metrics related to accuracy is the
Mean Squared Error (MSE). Although MSE is not typically
reported as a final evaluation value, it serves as the basis for
several other important quality indicators. An MSE value of zero
indicates perfect prediction accuracy, while higher values reflect
a greater discrepancy between predicted and reference data.
MSE is calculated using the following formula:

𝑀𝑆𝐸 =	
∑(𝑦! − ŷ!)"

𝑛 (1)

Where yi is true value, ŷi is the predicted value, and n is the
number of data points. Squaring the differences ensures that all
errors are positive, making the MSE value always non-negative
[5].

A widely used metric is the Peak Signal-to-Noise Ratio
(PSNR), which assesses the fidelity of an image by comparing
the original input image to the reconstructed or processed
version. PSNR measures the level of noise or error between the
two images and is expressed in decibels (dB). A higher PSNR
value indicates that the processed image is more similar to the
original and thus of higher quality. Importantly, the original and
processed images must be of the same resolution for PSNR to be
computed [6]. The PSNR formula is as follows:

𝑃𝑆𝑁𝑅 =	10	𝑙𝑜𝑔#$	
(𝐿 − 1)"

1
𝑁"∑ ∑ (Î(𝑟, 𝑐) − 𝐼(𝑟, 𝑐))"&'#

()$
&'#
*)$

 (2)

Where L is the maximum possible pixel value (for 8-bit
images, 𝐿=256), N x N is the total number of pixels in the image,
I (r, c) is the original image pixel value at row r and column c, Î
(r, c) is the corresponding pixel value in the processed image.

The following tables are organized by the algorithms. Each
test was run with 30,000 iterations. In the row beneath the title,
can be found the number of images used in each dataset. The
next row shows the number of cameras accepted by the
program—these are the cameras that were successfully
connected and used to generate the digital model. The final row
presents the evaluation results of each model, represented by the
corresponding PSNR values. In some places in the table, dashes
appear. These indicate that the program was unable to align the
images, and therefore could not generate a digital model from
them.

TABLE I. EVALUATION OF THE DATASETS

Hemisphere
Input

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic

Detected
cameras 18 30 40 50 60 70 80 90 100
PSNR
[dB] 25.152 27.019 28.888 28.575 29.653 30.868 30.636 33.377 33.287

Original Algorithm
Input

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic

Detected
cameras 12 27 34 43 43 62 59 76 85

PSNR[dB] 23.702 26.398 27.588 28.284 29.365 29.728 30.181 30.460 30.595

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 35

Random
Input

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic

Detected
cameras - - - - 14 21 54 63 53
PSNR
[dB] - - - - 23.430 26.681 26.032 24.659 27.177

Tibonachi
Input

images 20 pic. 30 pic. 40 pic. 50 pic. 60 pic. 70 pic. 80 pic. 90 pic. 100 pic

Detected
cameras 16 21 24 31 36 47 51 58 69
PSNR
[dB] 24.991 25.396 26.739 27.811 29.487 28.015 27.580 27.022 29.298

VII. OBSERVATIONS
In nearly all algorithms, increasing the number of input

images generally leads to a higher PSNR, suggesting improved
model quality with more data.

The Hemisphere dataset consistently achieves the highest
PSNR values across nearly all picture counts. It also exhibits a
very high camera acceptance rate, often utilizing 100% or close
to 100% of the input pictures

The Original Algorithm generally performs better than
Random and Tibonachi, but consistently lags the Hemisphere
dataset in PSNR. Its camera acceptance rate is moderate, lower
than Hemisphere.

The Random algorithm performs significantly worse than
the others, particularly in the lower image-count datasets where
it fails to connect any cameras at all (20–50 images). Even in the
higher datasets, its PSNR values remain consistently lower,
reflecting the importance of structured camera placement in
achieving high model quality.

The Tibonachi algorithm shows very strong early
performance, outperforming even Hemisphere at 20, 30, and 40
images. Its performance increases steadily and peaks at 29.487
(60 images), after which it stabilizes with mild fluctuations. This
makes it a viable choice when dealing with fewer images, due to
its efficient camera distribution.

 There is a clear correlation between the number of cameras
successfully used and the PSNR results. Algorithms like
Hemisphere and Original maintain a 1:1 camera-to-image ratio,
or close to it, while Random suffers from lower camera
utilization, impacting its output quality.

VIII. FUTURE WORK
In the future, this study could be expanded by including

additional camera placement algorithms that were not covered
in this paper. The scope of the research can also be broadened in
other directions. For instance, beyond Gaussian Splatting,
similar 3D reconstruction technologies could be incorporated
and compared. Another possibility is to test alternative software
solutions specifically designed for generating Gaussian
Splatting models, which may offer different features,
performance, or quality. These extensions could provide a more
comprehensive understanding of the strengths and limitations of
various approaches in photogrammetric 3D modeling.

ACKNOWLEDGMENT
This paper was supported by DISIC (09I05-03-V2), NEXT

(ERASMUS-EDU-2023-CBHE-STRAND-2), EULiST
(ERASMUS), CYB-FUT (ERASMUS+), InteRViR (VEGA
1/0605/23).

REFERENCES
[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,

and R. Ng, ‘NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis’, Aug. 03, 2020, arXiv: arXiv:2003.08934. doi:
10.48550/arXiv.2003.08934.

[2] B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis, ‘3D Gaussian
Splatting for Real-Time Radiance Field Rendering’, ACM Trans. Graph.,
vol. 42, no. 4, pp. 1–14, Aug. 2023, doi: 10.1145/3592433.

[3] (PDF) Improving NeRF Quality by Progressive Camera Placement for
Unrestricted Navigation in Complex Environments’. Accessed: May 16,
2025. [Online]. Available:
https://www.researchgate.net/publication/373641957_Improving_NeRF
_Quality_by_Progressive_Camera_Placement_for_Unrestricted_Navigat
ion_in_Complex_Environments

[4] ‘graphdeco-inria/gaussian-splatting: Original reference implementation
of “3D Gaussian Splatting for Real-Time Radiance Field Rendering”’.
Accessed: May 16, 2025. [Online]. Available:
https://github.com/graphdeco-inria/gaussian-splatting

[5] J. Frost, ‘Mean Squared Error (MSE)’, Statistics By Jim. Accessed: May
16, 2025. [Online]. Available:
https://statisticsbyjim.com/regression/mean-squared-error-mse/

[6] ‘What is peak signal-to-noise ratio in image processing’, HowDev.
Accessed: May 16, 2025. [Online]. Available:
https://how.dev/answers/what-is-peak-signal-to-noise-ratio-in-image-
processing

36 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

https://www.researchgate.net/publication/373641957_Improving_NeRF_Quality_by_Progressive_Camera_Placement_for_Unrestricted_Navigation_in_Complex_Environments
https://www.researchgate.net/publication/373641957_Improving_NeRF_Quality_by_Progressive_Camera_Placement_for_Unrestricted_Navigation_in_Complex_Environments
https://www.researchgate.net/publication/373641957_Improving_NeRF_Quality_by_Progressive_Camera_Placement_for_Unrestricted_Navigation_in_Complex_Environments
https://github.com/graphdeco-inria/gaussian-splatting
https://statisticsbyjim.com/regression/mean-squared-error-mse/
https://how.dev/answers/what-is-peak-signal-to-noise-ratio-in-image-processing
https://how.dev/answers/what-is-peak-signal-to-noise-ratio-in-image-processing
https://www.researchgate.net/publication/373641957_Improving_NeRF_Quality_by_Progressive_Camera_Placement_for_Unrestricted_Navigation_in_Complex_Environments
https://www.researchgate.net/publication/373641957_Improving_NeRF_Quality_by_Progressive_Camera_Placement_for_Unrestricted_Navigation_in_Complex_Environments
https://www.researchgate.net/publication/373641957_Improving_NeRF_Quality_by_Progressive_Camera_Placement_for_Unrestricted_Navigation_in_Complex_Environments
https://github.com/graphdeco-inria/gaussian-splatting
https://statisticsbyjim.com/regression/mean-squared-error-mse/
https://how.dev/answers/what-is-peak-signal-to-noise-ratio-in-image-processing
https://how.dev/answers/what-is-peak-signal-to-noise-ratio-in-image-processing

