
Examination of Minimal Camera Setups for 
Volumetric Video Capturing from a Time Perspective 

Marek Magala1, Ivan Minárik1 
1 Faculty of Electrical Engineering and Information Technology,  

Slovak University of Technology in Bratislava, Ilkovičova 3, 84104 Bratislava 
xmagala@stuba.sk 

 
 

 
Abstract – This study examines the impact of camera count on 
training time and quality in volumetric video capture using 3D 
Gaussian Splatting. Two datasets were processed with varying 
camera numbers, testing two reduction strategies: removing 
cameras from the center or edges. Results show that 14 cameras 
offer an optimal balance, reducing training time by up to 32 hours 
per minute of video (30 fps) with minimal quality loss, while fewer 
cameras cause significant artifacts. Edge removal proved more 
efficient, minimizing computational errors. 

Keywords – Gaussian Splatting; Volumetric video; Time of 
training; Quality. 

I.  INTRODUCTION 
Volumetric video captures dynamic 3D scenes, enabling 

applications in VR, AR, CGI, and videotelephony. However, 
high computational costs and long training times hinder real-
time use. This project aims to identify the minimal camera setup 
that balances training efficiency and model quality, using 3D 
Gaussian Splatting to process video frames from two datasets. 
The main goal of this project is to reduce long training times 
without sacrificing too much of the quality of the models. 
Finding this balance is key if volumetric video is going to 
become a more practical and widely used tool. Throughout the 
project, we tested different methods for removing cameras to 
optimize the training process. Although the original plan was to 
use 4D Gaussian Splatting, technical limitations led us to adapt 
differrent approach and instead use standard Gaussian Splatting, 
training a separate model for each frame of video. 

Workstation, where research was conducted used processor 
AMD Ryzen 9 7950X with 16 cores, 64 GB of RAM memory 
and graphic card Nvidia GeForce RTX 3060 Ti. 

II. RELATED WORK 
Volumetric video technology has made significant advances 

in recent years, driven by improvements in camera systems, 
computer vision algorithms and neural rendering techniques. 
One promising recent development is Gaussian Splatting, which 
represents scenes as collection of Gaussian functions rather than 
traditional meshes. 3D Gaussians are geometrical object shaped 
as ellipsoid, which are defined by position, opacity α, color and 
covariance matrix Σ which defines stretch and scaling of the 
Gaussian. The covariance matrix Σ is model with scaling matrix 
S and rotational matrix R. 

 𝛴 = 𝑅𝑆𝑆!𝑅! (1) 

Definition of 3D Gaussian position for specific point with 
center in point μ inside of 3D field is computed with equation: 
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This representation allows effectively model 3D structures, 

although this process can by optimized. Projecting of the scene 
runs by iterative rendering and matching 3D scene with real life 
views from images of dataset. From every image it will render 
view on scene and then every view is compared with real life 
views. Because of this process the function of loss L is 
minimized. Loss function in for interpreting difference between 
real life scene from generated one. 

 L = (1 − λ)L# +	λL*"++,- (3) 
 
L1 indicates difference in pixels between predicted and real 

image while LD-SSIM indicates structural differences while λ 
determines the percentage share that LD-SSIM has in the total loss 
function L and is experimentally set to λ = 0.1 [1]. 

4D Gaussian Splatting extends this idea 3D Gaussians of 
time domain. The technique we originally intended to use [2] 
defines canonical 3D Gaussians. These canonical Gaussians are 
modeled from the first frame and then moving is modeled. In 
this method spatial-temporal structure encoder is used. This 
encoder groups all nearby Gaussians by which computing of 
moving is more precise. It also uses a small neuron network 
which is used for decoding of moving and deformation. The 
final projection is used by differential splatting and for 
optimization total-variational loss is used to reduce big changes 
between two frames in time. 

Gaussians before there modeling needs cloud of points. This 
point cloud is made from a process called Structure from Motion 
(SfM). This process predicts 3D structure from collection of 2D 
images. One of the core methods involves identifying 
corresponding points across images taken from different 
viewpoints. If a specific, significant point is captured by two or 
more cameras, it can be identified using epipolar geometry. 

Significant points in the images can be detected using 
various algorithms, such as the Harris corner detector or SIFT. 
Big part of the process is determining the camera parameters, 
including calibration and position, which are represented by a 
projection matrix. This step involves a process known as bundle 
adjustment, which minimizes the reprojection error. 
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Reprojection error is defined as a difference that occurs when 
calculated 3D points are projected back onto their original 2D 
images. By reducing these errors, the accuracy of the 
reconstructed 3D scene improves, and inconsistent 3D points are 
eliminated [3]. 

Then after SfM Multi-View Stereo (MVS) builds upon its 
results and serves as a complementary technique. The sparse set 
of points generated by SfM is used as a foundation for creating 
a denser set of points, enabling detailed reconstruction of the 
scene. MVS calculates depth and normal information for each 
pixel in the images. By combining the depth and normal maps 
from multiple views, a dense point cloud is produced, providing 
a detailed representation of the scene. From this dense point 
cloud, a continuous 3D surface of the scene can be estimated 
using surface reconstruction algorithms, such as Poisson surface 
reconstruction. In this work, the open-source software 
COLMAP [4] was used to perform both the SfM and MVS 
processes. 

COLMAP is general purpose research software tool 
designed for Structure from Motion and Multi-View Stereo, 
offering command line or graphical interface. It enables the 
reconstruction of 3D models from both ordered and unordered 
sets of images. To use COLMAP, only the path to the folder 
containing the input images is required; the software then 
automatically generates a dense point cloud. COLMAP this 
information stores into 3 .txt files called Cameras, Images and 
Points3D. 

Recent study [5] found a new approach to initial settings. 
Result is 3DGS-MCMC approach, to make training more robust 
to initialization via Markov Chain Monte Carlo sampling. This 
type of sampling gives high probability to collection of 
Gaussians which are more faithful to real life images. 

III. METHOD 
Two datasets, "coffee_martini" and "cut_roasted_beef," 

were processed by converting videos to images at 2 fps. 
COLMAP performed Structure-from-Motion (SfM) to generate 
point clouds, followed by 3D Gaussian Splatting for per-frame 
model training. Since this process was time consuming, all 
commands were pre-written into a text file and copied into a 
terminal. All frames convert sequentially after the last one were 
converted which ensured smooth and continuous processing of 
each frame. 

After conversion, the train.py script was launched to start the 
actual model training. Script train.py is part of Gaussian 
Splatting workflow from [1]. The final step of training involved 
copying all frames .ply into one separate folder. In this folder, 
all trained models are organized and renamed according to the 
corresponding frame sequence number. At the and all times were 
measured and written down into spreadsheet. For the second 
dataset, loss information was also written down. 

For removing camera views from dataset were used 2 
different methods. 

1) Method: Removing cameras positioned in the middle 
between two cameras along the plane. This approach led to 
many problems in calculating camera positions, especially 

when the number of cameras was low (e.g., 6 cameras). This 
resulted in increased training time for problematic frames up 
to three times 

2) Method: Removing cameras from the outer edges of the 
captured scene. This method eliminated issues with calculating 
camera positions. However, it reduced the overall capture area, 
which negatively affected the quality of the resulting models. 

 

 
Figure 1.  Dependence of training time on the number of cameras per frame 

From the Figure 1. is clear to see that the second method was 
more efficient for almost every number of cameras. The only 
exception was at 10 cameras, where the first method proved 
slightly more efficient. Although a difference of 24 minutes may 
seem significant, the average difference in training time per 
frame between the two methods for 10 cameras is approximately 
1 minute and 12 seconds. Dataset cut_roasted_beef was 
removed from the Figure 1. Because of better visibility of the 
smaller differences between other datasets. 

On the other hand, a substantial difference is noticeable at 
six cameras, where the total training time difference is nearly 3 
hours and 50 minutes. For each frame this corresponds to an 
average difference of about 11 minutes and 30 seconds. It is 
important to note that this significant difference does not mean 
that every model took 11,5 minutes longer to train. Instead, 
problematic frames sometimes required up to 86 minutes of 
training more, while “normal” non-problematic frames typically 
took around 25 minutes. 

On the other hand, a substantial difference is noticeable at 
six cameras, where the total training time difference is nearly 3 
hours and 50 minutes. For each frame this corresponds to an 
average difference of about 11 minutes and 30 seconds. It is 
important to note that this significant difference does not mean 
that every model took 11,5 minutes longer to train. Instead, 
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Figure 2.   Visible differences between using 18 and 6 cameras in dataset 

problematic frames sometimes required up to 86 minutes of 
training more, while “normal” non-problematic frames typically 
took around 25 minutes. 

IV. COMPARISON OF MODELS BASED ON THE NUMBER OF 
CAMERAS 

Each model was trained at 30 000 iterations and was named 
using the format coffee_martini_00 or cut_roasted_beef, where 
the last two digits indicated the total number of cameras used. 
Additionally, models labeled coffee_martini_00_2 were created, 
where the _2 indicated that camera removal followed the second 
method. Dataset cut_raosted_beef was trained only with second 
method, because this dataset was used after discovering second 
method. Difference in dataset which made significantly different 
results was, that cut_roasted_beef was darker dataset with less 
light in scene. 

Since the models were trained using standard Gaussian 
Splatting, there were occasional issues with estimating the 
correct position and spread of individual Gaussians. This 
sometimes resulted in clouds of Gaussians appearing in the final 
model, which could obstruct the view. These clouds are marked 
in 0as rectangle 1. and instance where this cloud obstructs the 
view is visible in Figure 3 in rectangle 1. In extreme cases, parts 
of the original input photographs could even be seen, where the 
model failed to properly infer the Gaussian’s position. Instance 
of this can be see in Figure 2. inside of rectangle 3. Objects 
placed on the table, while distinguishable from one another, 
were reconstructed with enough quality to easily tell them apart. 
The window forming the background is not captured in full 
detail, but its structure and the objects behind it are still 
recognizable. 

The model with the highest number of cameras is coffee_ 
martini_18, utilizing 18 cameras. This model required the 
longest training time but also produced the highest quality result. 
It offers the widest range of motion, allowing the object to be 
observed with fewer artifacts. Cut_roasted_beef highest number 
of cameras was 20. The difference in quality of the 20 cameras 
dataset and 18 cameras dataset was nearly identical. Because of 
the darker scene in cut_roasted_beef the difference with 
coffee_martini is more noticeable. Bigger gaussian clouds, more 
distortion on the edges. 

 
Figure 3.  Graph shows development of loss over frames of the video. As 
expected, lowest camera count renders highest amount of loss. Conversely, 
loss is relatively stable regardless of whether 10, 14 or 18 cameras are used 

for reconstruction, with 18 cameras’ loss being slightly on top. 

The models were not otherwise modified. The only adjust-
tment made were to align the default camera view directly 
toward the man in the video. This adjustment ensured that during 
playback of the volumetric video, the camera remained approxi-
mately focused on the same location across different frames. 
This alignment was done using Jawset Postshot software. The 
only adjusted parameter was the rotation angle along the Y-axis, 
which varied between 5° and 40°. 

A. 14 Cameras 
The first model with removed cameras was coffee_martini_14. 
This model required about 4 minutes less training time 
compared to the full model. However, the small time difference 
was mainly due to frame 17, which turned out to be problematic. 
Frame 17 failed to calculate camera positions and point 
placements, resulting in a model consisting only of a flat image 
with no Gaussians produced. 

For the other frames, there were only minimal differences 
compared to models trained with the full number of cameras. 
However, the artifacts visible in 0present in coffee_martini_18 
became more pronounced, Gaussian clouds were larger and 
more frequent. Some objects on the edge appeared with lower 
quality, and the area around the center showed less distortion 
compared to the edges. 
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Figure 4.  Difference between 20 and 10 cameras in dataset cut_roasted_beef 

The coffee_martini_14_2 model, created using the second 
removal method, achieved similar results, with the notable 
improvement that frame 17 was “fixed,” leading to an overall 
shorter volumetric video training time. The main difference in 
quality between the first and second methods was that, in the 
second method, objects on the edge visible in 0had more dispersed 
Gaussians, and quality degraded more quickly when the camera 
moved away from the center. 

Cut_roasted_beef_14 required about 5 minutes less than with 
18 cameras, but also the quality was nearly identical. Same 
Gaussian clouds, items on the edge unexpectedly had in some 
frames less distortion than with 18 cameras. 

B. 10 Cameras 
Coffee_martini_10 and coffee_martini_10_2 already sho-wed 

more significant differences compared to the full model. Gaussian 
clouds became more frequent toward the edges of the model, 
which somewhat obstructed the view, although the freedom of 
camera movement remained similar. On the edges, the Gaussian 
artifacts could block parts of the model. In the center, the man’s 
lower torso and legs, which should have been black, appeared gray 
instead. 

Cut_roasted_beef_10 continued trend of taking less time for 
training, without sacrificing too much of quality in model. The 
difference between models with 18 cameras and 10 had almost no 
visible differences apart from the edges, where distortion of 
gaussians was earlier than with more cameras. 

C. 6 Cameras 
Coffee_martini_6 was the model with the fewest cameras, 

leading to significant degradation. In 7 out of 20 frames, the scene 
was almost unrecognizable. Most often, only a flat image without 
proper 3D structure was created. Even the frames that were 
successfully modelled contained large amounts of Gaussian noise. 
This model also took longer to train than model with all cameras. 

Finally, coffee_martini_6_2, despite not containing 
problematic frames, remained largely unusable. The movement 
away from the model’s center was too restricted for meaningful 
volumetric video playback. Gaussian clouds were very frequent 
and large. The man’s black coat turned gray, and in some frames, 
his head was visibly displaced from the body. 

Cut_roasted_beef_6 was so ineffective model, that the time of 
training was removed from Figure 1. While quality difference 
between 10 cameras and 6 were almost unrecognizable.  

V. RESULTS 
Training time decreased with fewer cameras, with edge 

removal being more efficient (e.g., 31% reduction at 6 cameras). 
However, quality degraded significantly below 10 cameras, with 
artifacts and failed 3D reconstructions. The 14-camera setup was 
optimal, saving around 32 hours for a 1-minute video (30 fps) 
compared to 18 cameras, with negligible quality loss. Darker 
datasets showed less sensitivity to camera reduction. 

Although the 10-camera setup saved some training time, this 
reduction significantly impacted model quality, which noticeably 
declined. With the 6-camera setup, time savings were inconsistent. 
In some cases, training took up to six times longer compared to 
using all cameras, while model quality deteriorated. 

Method 2 of camera removal was more efficient, reducing 
errors in camera pose and point cloud estimation. However, it 
couldn't fully offset quality loss with fewer cameras, where models 
fell below acceptable standards. 

ACKNOWLEDGEMENT 
Research in this paper was supported by projects DISIC (09I05-
03-V02-00077), InteRViR (VEGA 1/0605/23), and NEXT 
(ERASMUS-EDU-2023-CBHE-STRAND-2, ID: 101129022). 

REFERENCES 
[1] KERBL, B.; KOPANAS, G.; LEIMKÜHLER, T.; DRETTAKIS, G. 3D 

Gaussian Splatting for Real-Time Radiance Field Rendering [online]. 
ArXiv. 2023. [cit. 2025-04-20] Available from: 
https://arxiv.org/pdf/2308.04079 

[2] WU, G.; YI, G.; FANG, J.; XIE, L.; ZHANG, X.; WEI, W; LIU, W. 
TIAN, Q.; WANG, X. 4D Gaussian Splatting for Real-Time Dynamic 
Scene Rendering [online]. ArXiv. 2024-7-15. [cit. 2025-04-20]. Available 
from https://arxiv.org/pdf/2310.08528v3. 

[3] LOBO, T. Understanding Structure From Motion Algorithms [online]. 
Medium. 2023-12-18. [cit. 2025-04-20]. Available from 
https://medium.com/@loboateresa/understanding-structure-from-
motion-algorithms-fc034875fd0c. 

[4] SCHOENBERGER, J. COLMAP [online]. GitHub. 2024. [cit. 2025-04-
22]. Available from https://colmap.github.io/tutorial.html. 

[5] HUANG, Z.; WANG, P.; ZHANG, J.; LIU, Y.; LI, X.; WANG, W. 3R-
GS: Best Practice in Optimizing Camera Poses Along with 3DGS 
[online]. ArXiv. 2025-04-05. [cit. 2025-04-21]. Available from: 
https://arxiv.org/pdf/2504.04294v1.pdf 

[6] T. Li et al., “Neural 3D Video Synthesis from Multi-view Video”, v 2022 
IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), New Orleans, LA, USA: IEEE, jún. 2022, s. 5511–5521. doi: 
10.1109/CVPR52688.2022.00544. 

40 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

https://doi.org/10.1109/CVPR52688.2022.00544
https://doi.org/10.1109/CVPR52688.2022.00544



