Classification of Written Numbers using 2D
Convolutional Neural Network

1% Matd§ Durovié
Institute of Computer Science and Mathematics
FEI of STU in Bratislava
Bratislava, Slovakia
xdurovicm @stuba.sk

Abstract—This article introduces a configurable system for
building CNNs designed for grayscale image classification. The
network architecture and training settings are defined via a JSON
file, allowing full control over the layers and parameters without
modifying the code. The system was tested on MNIST dataset
using two CNN configurations to classify handwritten numbers.
Both achieved satisfactory accuracy. The modular design makes it
suitable for rapid prototyping and experimentation in computer
vision applications.

Index Terms—neural networks, convolutional neural networks,
machine learning, image recognition, handwritten digits, param-
eter tuning

I. INTRODUCTION

In the last decade, Convolutional Neural Networks (CNN),
became a standard approach in the area of computer vision,
especially in recognition of objects, image classification, or
feature detection. Their ability to extract dependencies in space
with filters significantly outperforms other known methods of
feature extraction. Usually, these solutions are proposed for
the whole spectrum of visible light (RGB), but for many other
approaches, like text recognition or medical picture processing,
it is necessary to use grayscale images.

In this article, we introduce a parameterizable system for
designing your own 2D CNN designated for the classification
of grayscale pictures. The main focus is to create a specific
model that meets the requirements of a given problem, includ-
ing setting the size of the convolution and dense layers, the size
of the kernels, and the options for optimization of the model.
The system was designed with simplicity of deployment and
the possibility of analyzing loss development and accuracy of
classification for given classes.

The proposed solution was tested on the MNIST open
source database, where our results show good accuracy, even
on smaller models. We show the impact of architectonic
changes on the model results.

In the next parts of this article, we discuss related work in
CNNs and grayscale picture classification (Section II), and in
Section III we describe the approach and network architecture,
we were using. Section IV discusses the results achieved,
including the accuracy of a given model reached and the
visualization of the loss. We discuss the results in Section
V and the limits of the designed system. Finally, in Section

27 Matd§ Vaio
Institute of Computer Science and Mathematics
FEI of STU in Bratislava
Bratislava, Slovakia
xvanom @ stuba.sk

VI we conclude our achievements and propose other work that
can be done to the system in the future.

II. RELATED WORK

Active research is underway on handwritten text recognition
around the world in business or in the academic environment.
They are using similar and other methods to classify text.

In [1] were using Adaptive Residual Attention Network
(ARAN), where they were finetuning the model with Improved
Energy Valley Optimization Algorithm (IEVOA) for enhanc-
ing the recognition performance.

Article [2] is studying recognition on Tamil handwriting and
shape recognition. The project confronts shape variations and
a vast character inventory, utilizing a meticulously categorized
dataset of approximately 91,000 samples across 156 distinct
character classes developed by MNIST.

Moreover, there are many projects going on with combining
neural networks with other approaches like KNN algorithm,
SVM, and PCA. In [3] works on classifying the digits using
a combination of KNN, PCA, and SVM. They trained their
model on the MNIST dataset.

III. METHODOLOGY

In this section, we describe the architecture of proposed
system, the pre-processing of input data, and training of the
model. This system is using dynamic model construction,
based on given JSON file, taken from input. As the output, the
system returns the best trained model, figures of development
of loss and accuracy, with confusion matrix.

A. Dataset and data pre-processing

In the experiment, we used an open source dataset called
MNIST, which is a part of the keras and tensorflow libraries.
This dataset contains 70000 images, and these are divided into
training set (60000 images) and a test set (10000 images). Each
image has dimensions of 28x28 pixels and they are grayscale
spectrum.

Redzur 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

77

78

~IeJehu]o]
S ML)

Fig. 1. Examples of images with assigned classes

As a pre-processing method, we used normalization, where
each image is in the range [0,1]. The normalization is given
by this formula:

~

)

(z,

25

<

Inm“m('ray) = (1)
where [I(x,y) represents the value of the pixel in the
position (z,y).

B. Neural network specification

The architecture of the model is given by the input JSON
file, which contains the list of layers, with their exact order.
Each layer is described by the field "fype” and other parame-
ters, such as “filters”, “kernel size”, "activation”, etc. Image
2 shows this file and its structure.

ConvaD*, “filters®: 32, "kernel_size™: *activation®: *relu
MaxPooling2D®, "poo’ ze": [2, 2]},
Conv2D*, "filters®: 16, "kernel_size":
MaxPooling2D*, *pool_size': [2, 21},
pe*: "Flatten"},
*: "Dense’, ‘units':
": *Dropout”,
*: "Dense, "units”:

[3, 31, , "input_shape”: [64, 64, 11},

[3, 31, ractivation®: “relu"},

, "activation®:
: 0.4},
10, “activation®:

relu'},

softmax"}
1.

“optimizer®: A
learning_rate®
"epochs®: 15

i

Fig. 2. Example of the input JSON file

C. Model construction

After successful loading of the input file, the construction
of our model will begin. Each layer is created dynamically on
the basis of the type. We use the code shown in Figure 3.

model = Sequential()

for layer_config in config["layers®]:
layer_type = layer_config.pop("type")
layer_class = getattr(layers, layer_type)
model.add(layer_class(**layer_config))

Fig. 3. Program that constructs the neural network model

Redzur 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

The convolutional layer applies a set of filters to the input
data. The output feature map O is computed by:

M—-1N-1

0ij=0(>_ > Win* Ligm jin +)

m=0 n=0

2

where W are the filter weights, I is the input feature map, b
is the bias term and o is the activation function.

D. Loss functions

in supervised classification, the loss function determines the
difference between the actual labels and the predicted class.
For our system, we have chosen the categorical cross-entropy,
because it is a standard for classification wit one-hot encoded
targets. The categorical cross-entropy loss L is defined as:

c
L= yilog() 3)
i=1
where y; is the true label and %; is the predicted probability
for class ¢ and C' is the amount of classes. This loss function
penalizes confident but incorrect guesses more strongly and
encourages the model to assign high probability to the correct
class.
1) Alternative loss functions:

o Binary Cross-Entropy: It is used in binary classification
or multi-label tasks. Defined as:

L= —[ylog(g) + (1 —y)log(1l —)] “)

e Mean Squared Error: Mostly used in regression tasks,
defined as:

n

£=13 -9

n -
=1

®)

e Sparse Cross-Entropy: Variant of categorical cross-
entropy used when labels are integer based instead of
one-hot.

E. Model optimizer

Optimizers update the model’s trainable parameters in order
to minimize the loss function. The proposed system uses
the Adam optimizer, which is an optimization method that
maintains moving averages of squared gradients and gradients.

* i
77 \/UTf + €
where ©, are model parameters, 7 is the learning rate, ¥y
and m; are bias-corrected estimates of the gradient’s first and
second moments.

1) Other optimizers:

e SGD (Stochastic Gradient Descent): A simple and pow-
erful optimizer that can be enhanced with momentum or
learning rate schedules.

o RMSprop: Maintains an exponentially decaying average
of squared gradients. It is suitable for non-stationary
objectives.

o Adagrad: Adapts the learning rate based on the magni-
tudes of the previous gradients. Useful on sparse data.

G111 =6y (6)

F. Model compilation

After the model construction, it is compiling using the
optimizer, loss function, and metrics defined in the input
configuration.

G. Outputs

After training, the system automatically saves the best-
performing model. It also generates visualizations of the
training process (loss and accuracy curves) and computes a
confusion matrix to evaluate classification performance per
class.

H. System advantages

The system offers:

e Modularity: each aspect of the architecture, can be de-
fined separately, outside of the source code

o Reproducibility: experiments can be reproduced thanks

to JSON configurations
o Experimental flexibility: change of architecture is easy,
and fast. You can change only the configuration file.

IV. EXPERIMENTS AND RESULTS

In this section, we present the experimental setup, evaluation
metrics, and the results obtained from training and testing of
the dynamically constructed CNN model.

A. Setup of experiments

The experiments are carried out on the MNIST dataset,
which consists of 70000 images. The input images were
normalized to the range [0, 1] as we described in Section III-A.

The models were initialized using the JSON configuration
file, and in both experiments they used Adam optimizer.
For evaluation metrics, we used categorical cross-entropy and
categorical accuracy.

B. Experiments

1) Experiment 1: In table I is shown the network configura-
tion and in II the training configuration for the first experiment.

TABLE 1
CONFIGURATION OF THE CNN MODEL USED IN EXPERIMENT 1
Layer | Type Parameters
Input Input Layer 28 x 28 x'1
1 Conv2D 64 filters, 3 x 3 kernel, ReLU, L2

regularization A = 0.005

2 MaxPooling2D 2 x 2 pool size

32 filters, 3 x 3 kernel, ReLU, L2
regularization A = 0.005

3 Conv2D

4 MaxPooling2D 2 x 2 pool size

5 Conv2D 32 filters, 3 x 3 kernel, ReLU, L2
regularization A = 0.005
6 BatchNormalization | —
7 Activation ReLU
8 Flatten —
9 Dense 128 units, ReLU
10 Dropout rate = 0.2
11 Dense 128 units, ReLU
12 Dropout rate = 0.2
Output | Dense 10 units, softmax

TABLE II
TRAINING PARAMETERS USED IN EXPERIMENT 1

Parameter Value

Optimizer Adam

Learning rate 0.0001

Epochs 70

Early stopping | Patience = 5

Loss function Categorical cross-entropy

Table III shows the loss and accuracy of Experiment 1,
Figures 4 show its training process, and Figure 5 shows the
confusion matrices for training and test sets in Experiment 1.

TABLE III
LOSS AND ACCURACY RESULTS OF FIRST EXPERIMENT

Testing accuracy
0.988

Testing loss
0.061

Training accuracy
0.993

Training loss
0.036

Fig. 4. Development of loss and accuracy during training of experiment 1

Redzur 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

79

Training set TABLE V
TRAINING PARAMETERS USED IN EXPERIMENT 2

. Parameter Value
Optimizer Adam
Learning rate | 0.0005
3 Epochs 70
- Loss function | Categorical cross-entropy
Callbacks EarlyStopping (patience=5), ReduceLROn-
Plateau (patience=3, factor=0.5)

Predicted

Testing set

In table VI we can see the loss and accuracy of Experiment
2, Figure 6 shows its training process, and Figure 7 shows the
confusion matrices for training and test sets in Experiment 2.

Fig. 5. Confusion matrix for the in experiment 1

TABLE VI
LOSS AND ACCURACY RESULTS OF SECOND EXPERIMENT

Training loss | Training accuracy | Testing loss | Testing accuracy

2) Experiment 2: Table IV shows the network configuration 0.036 0.998 0.079 0.989
and table V shows the training configuration for the second
experiment.
TABLE IV
CONFIGURATION OF THE CNN MODEL USED IN EXPERIMENT 2
Layer | Type Parameters
Input Input Layer 28 x 28 x 1 (grayscale image)
1 Conv2D 64 filters, 3 x 3 kernel, ReLU, L2
regularization A = 0.005
2 BatchNormalization | — s
3 Activation ReLU \ =
4 MaxPooling2D 2 x 2 pool size \
5 Conv2D 32 filters, 3 x 3 kernel, ReLU, L2 .
regularization A = 0.005 e\
6 BatchNormalization | — \
7 Activation ReLU ” ~N
8 MaxPooling2D 2 X 2 pool size T o
9 Conv2D 32 filters, 3 x 3 kernel, ReLU, L2 S ’ T T
regularization A = 0.005 = 7] ——
10 BatchNormalization | — //'/7 —7
11 Activation ReLU /‘
12 MaxPooling2D 2 x 2 pool size i |
13 Flatten —) /
14 Dense 128 units, ReLU ,’
15 Dropout rate = 0.3 o
16 Dense 64 units, ReLU : ’ " e
17 Dropout rate = 0.3
Output | Dense 10 units, softmax Fig. 6. Development of loss and accuracy during training of Experiment 2

Redzur 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

Testing set

4 s
Fredicted

Fig. 7. Confusion matrix for the in Experiment 2

V. DISCUSSION

The experiments carried out demonstrate the effectiveness
of dynamically constructed CNNs for grayscale classifica-
tion. Both tested architectures achieved high accuracy on the
MNIST dataset, confirming the sustainability of the proposed
system for such tasks.

Compared with our experiments, Experiment 2 (Section
IV-B2) outperformed 0.1% the baseline configuration of Ex-
periment 1 (Section IV-B1). For Experiment IV-B1 In Figure
5, we see well-colored diagonals of the confusion matrices,
which indicate good predictions. There are no signs of over-
fitting or underfitting. We can see that there was a problem
that the model falsely predicted class 3, when it was class 5
in 13 cases. This can be caused by the same position of the
lower arch in these numbers. In the second experiment, we
do not see this phenomenon to occur, but in both cases we
see present the false predicament of class 2 when class 7 was
given.

The inclusion of dropout layers in both experiments helped
to build a better generalization ability of our models. It is
indicated by smooth loss and accuracy curves.

We observe that even after adding one more convolutional
layer, the accuracy of the model did not increase that much.
For a more accurate model, for example with accuracy in the
high 99% we would need a lot of more trainable parameters
than we have in our model. In our case, the better model has
125400 parameters and the training lasted about 1 hour and 15
minutes, while the simpler model has 99400 and the training
lasted about a half hour. This shows how increasing the
complexity of the network significantly increases the training
time.

In general, the results validate the flexibility, modularity,
and effectiveness of the proposed dynamic CNN construction
approach for grayscale image classification.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the flexible and dynamically con-
figurable system for building convolutional neural networks,
tailored for grayscale classification tasks. The system enables
users to define the entire network architecture, including
the convolutional, pooling, normalization, dense, and dropout
layers, through an external JSON configuration file. This
modular approach ensures high reproducibility and ease of
experimentation without the need to alter the source code. The
system also supports the specification of training parameters,
such as optimizer, loss function, learning rates, and callbacks.
This further increases flexibility and opens the door to efficient
hyperparameter tuning.

We evaluated the proposed solution on the MNIST dataset
using two different CNN configurations. Both experiments
achieved high classification accuracy, with the second, deeper
model reaching a test accuracy of 98,9%.

In future work, we plan to extend the capabilities of the
system by:

o Adding support to more types of layer, such as LSTM

and GlobalAveragePooling.

¢ Including data augmentation techniques to improve gen-

eralization on more complex datasets

o Support of logging and monitoring of training process via

web interface.

In summary, the system offers a solid and extensible base
for conducting experiments in deep learning, especially in
educational and research contexts, where rapid prototyping is
essential.

REFERENCES

[11 S. Rao N, N. Kennedy Babu C, “Adaptive Residual Attention Net-
work for Handwritten Character and Digits Recognition with Improved
Energy Valley Optimizer Algorithm” 2024 International Conference
on Advances in Data Engineering and Intelligent Computing Systems
(ADICS).

C. Varshini, S. Yogeshwaran and V. Mekala, "Tamil and English Hand-
written Character Segmentation and Recognition Using Deep Learning,”,
2024 International Conference on Communication, Computing and In-
ternet of Things (IC3I0T). Chennai, India, 2024, pp. 1-5.

M. Pan and J. Lin, ”Research on Handwritten Digit Recognition
Based on Intelligent Algorithms,” 2024 6th International Conference
on Internet of Things, Automation and Artificial Intelligence (IoTAAI),
Guangzhou, China, 2024, pp. 614-617

[2]

[3]

Redzur 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

81

82

Redzur 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

