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Abstract—Maximization and minimization of functions are
problems that occur in most scientific fields. There are several
methods for solving them and one such method is the evo-
lutionary strategy algorithm, which is an algorithm inspired
by the biological theory of evolution. The algorithm works
with a set of candidate solutions, and in each iteration, these
solutions are crossed and mutated to create new ones. The
newly created solutions are then evaluated and the best solutions
are moved to the next iteration. This process is repeated until
the optimal solution is found or another terminating condition
occurs. In this paper, we implemented such an algorithm and
used it to maximize the chosen function. We also found the best
combination of parameters for which the algorithm gives the best
result.

Index Terms—evolution strategy, maximization, optimization.

I. INTRODUCTION

In the wild, there is only one rule: stronger wins. The
strength of an individual can be described by its speed, size
or even its coloring. These strong individuals have a better
chance to reproduce, ensuring that the next generations will
be better adapted to the unforgiving environment. But how
might we apply this concept to finding the maximum of
a nonlinear function? This principle inspired the emergence
of evolution algorithms. Stochastic strategies that search for
optimal solutions to problems by refining the “population”
of possible solutions from generation to generation. In our
case, we focus on the use of evolutionary algorithms to find
the maximum of a nonlinear function, where the value of an
individual is not determined by its strength or size, but by
the result obtained by fitting it to the function. The higher the
value, the “stronger” the individual and the more likely it is
to carry its properties to the next generation.

II. METHODOLOGY
A. Problem description

Maximization (or minimization) of a function is the problem
of finding the parameters for which the function has the largest
(or smallest) value. This problem occurs in most scientific
fields. For example, in the field of artificial intelligence,
the loss function of neural networks is minimized during
their training. For testing our implementation we choose the
following function:
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B. Evolution strategy approach

Evolution strategies consist of key steps crucial to the
optimization process, each impacting solution quality and
speed. The algorithm follows a cyclic process, shown in
figure 1, where steps build on each other and are repeatedly
executed in each iteration until the termination criterion is
fulfieled [1].
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Fig. 1. The flow of an evolution strategy algorithm
1) Generating the initial population P,

The first step is to generate the individuals of the initial
population P;,;; = X1, ...,X,. Each individual is represented
by a vector of real numbers x; = (x;,¥;, 0s,,0y,), the
individual parameters are generated from a predefined range
of values [2].

The parameters = and y:
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« define the individual’s position in the optimized function
and affect its quality.

The parameters o, and o, are:

« non-negative values (dispersions) of a normal distribution
that control mutation rate, ensuring population diversity.

Then each individual x; is evaluated using the fitness
function:

(1 - 6) ) f(xiayi) + fmax - € = fmin
fmax - fmin

The fitness function is used to assess each individual z;
on how successful it is in a given environment. The function
normalizes the outputs in the interval (0,1) where values
closer to 1 indicate that the individual fits the function better.

o parameter ¢: minimum fitness assigned even to the worst
individual (figure 4), ensuring it stays in the process and
supports population diversity.

e f(z,y): evaluates individual performance based on z; and
y; fitted to the function.

o finaz and fin: estimated values of the local maximum
and minimum, used for normalization [2].

[
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Fig. 2. Fitness function
2) Selection of parents y for the generation G;

From the population P, p parents are selected for the
generation G;(i = 0,1, ...,n) using the roulette wheel.

It is a probability-based selection method based on fitness.
Conceptually, this is equivalent to repeatedly spinning a single-
arm roulette wheel, where the sizes of the holes reflect the
selection probabilities.

For each individual x;, its fitness probability is calculated:

_ fitness(x;)
B >_; fitness(x;)

where > fitness(x;) is the total fitness of all individuals
in the population. For selection, the cumulative probability

P(x:) 3)
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distribution is computed as a list of values: [a1,as,...,a,],
where ]
3

a; =Y Py “)
=1

assuming that a,, = 1.

o Py, is the selection probability of individual 7 based on
fitness.

« This cumulative distribution covers the interval [0, 1].

o If we randomly generate a number r € [0, 1], we search
for which interval a; falls into. Individual ¢ is selected
if: a; —1<r<=a;

This ensures that fitter individuals have a higher selection
chance, but randomness still gives weaker ones a chance,
supporting diversity; highly fit individuals can be selected
multiple times [2].

3) Reproduction

After the selection of u parents, reproduction occurs to
produce new A offspring. In evolutionary strategies (ES),
reproduction is composed of two main steps: crossover and
mutation.

3.1 Crossover

In evolutionary strategies, there are a number of methods
to implement crossover, the key is:

« How many parents p are used to produce one offspring

)\i .

a) Local (local crossover)
Each \; offspring is created from two parents, denoted
e.g. as 1 and po, which are selected from the whole
set of u parents using the roulette wheel mechanism
(as explained above). It is possible that one parent will
be selected twice, so that it will cross with itself.

b) Global (global crossover)
One \; offspring is created by combining information
from all p parents.

o How their parameters z;, y;, 04, , 0y, are combined, which

the offspring will inherit:

a) Discrete recombination
Each parameter of the offspring (z;,¥;,04,,0,,) is
randomly taken from one of the parents.

b) Average recombination
The parameters of the offspring are calculated as
the arithmetic mean of the values of all participating
parents [2].



3.2 Mutation

Mutation is the second essential step in reproduction
and is crucial for maintaining diversity in a population.
While selection and crossover exploit known good solutions,
mutation enables exploration of new areas, preventing the
algorithm from getting stuck in local maxima. Evolutionary
strategies mutate both x;,y; and dispersions o, , oy, , adapting
mutation size to the population’s distance from the optimum

[2].

1) Mutation of dispersions o,, oy,

The formula for mutation variance is:

!’ N(0,0
O’mi—O'mi'e( @)

®)

o 0. - the mutated value

e N(0,0¢) - random value from a normal distribution with
mean 0 and global variance og

e The variance (0,,) can never be negative - so the ex-
ponential form e™V(%:7¢) is used, which always returns a
positive number

o The value of o (global mutation variance) is mostly set
as a constant, ofte og =1

2) Mutation of x;,y; parameters

When the mutated variance values are ready, then the x;, y;
parameters themselves are changed according to:

x; =x; + N(0,0,,) (6)

A normally distributed random value with standard

deviation ¢/, is added to x; [2].
4) Evolution Strategies (ES)

After the reproduction phase, when A offspring are
produced, it is the turn of selection, which determines who
will advance to the next generation of ;. Evolution strategies
define the set of individuals selected for the new population
P. We applied two basic strategies: ES(u, A) and ES(pu+ A).

4.1 Non elistic strategy E.S(u, \)

This strategy selects the new population exclusively from
the offspring A, with parents p discarded. Offspring are
ranked by fitness, and the best p are selected for the next
generation. It’s important that A > g to ensure diversity,
which can help avoid local optima and aid in finding the
global optimum. This strategy is illustrated in figure 3.
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Fig. 3. ES(u, \) strategy

4.2 Elitist strategy ES(u + A)

This elitist strategy forms the next population from the
combined pool of parents and offspring p + A, individuals
by fitness are chosen. Preserving high-quality solutions and
promoting faster, more stable convergence [3]. This approach
is illustrated in figure 4.
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Fig. 4. ES(u+ \) strategy

C. Parameter tuning

To find the best parameters for the algorithm we used the
grid search technique. In this technique, multiple values are
chosen for each parameter and then all combinations of these
values are tested. For each combination, an average fitness
value is calculated and the combination with the best value
is declared as the best combination. Since our algorithm is
stochastic and thus may not always give the optimal result
(for example, it may get stuck at a local maximum), for each
combination of parameters we ran the algorithm 10 times
and took the average fitness value of the best individual. The
parameters that we used and tasted in grid search are listed in
table 1.

TABLE I
PARAMETER GRID
Parameter Values
Number of parents 8, 16, 32
Number of offspring 16, 32, 64
Number of generations 1000

Estimate function range

(-1, 15)

Init x range

(-10, 10), (-100, 100)

Init y range

(-10, 10), (-100, 100)

Init o, range

(0.01, 0.1), (0.1, 0.15), (0.3, 1)

Init o range

(0.01, 0.1), (0.1, 0.15), (0.3, 1)

oG

1

€

0.01, 0.05, 0.1, 0.3

Evolution strategy

ES(u,A), ES(p+ N)

Crossover strategy

DISCRETE, AVERAGE

Crossover scope

LOCAL, GLOBAL
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III. RESULTS

After running the grid search over the defined parameter
space, we tested 7666 parameter combinations. Each combi-
nation was run 10 times, and we used the average fitness of
the best individual as the final score.

A fitness of O appeared in 432 combinations, all due
to invalid configurations where the non-estimating strategy
(ES(u,A)) didn’t meet the required A > u. These were
excluded from further analysis.

TABLE 11
SIMPLIFIED DISTRIBUTION OF FITNESS SCORES ACROSS PARAMETER
COMBINATIONS
Fitness Interval | Number of Combinations
0.0 432
(0.0 -04) 449
(0.4 - 0.6) 270
(0.6 — 0.8) 1817
(0.8 = 0.9) 2127
(0.9 - 1.0) 3113
1.0 1516

We focused on the 1516 combinations with a fitness of
exactly 1.0 to identify the importance of each parameter and
its best values (figure 5)

From the resulting data, we observed the following trends:

o Number of parents: better results were achieved with

more parents.

o Number of offspring: higher performance was observed

with more offspring.

o Initial y range: the narrower range performed better.

o Epsilon (mutation rate): the moderate value showed

slightly better results.

o Selection strategy: better results were achieved using

parents and offspring.

« Crossover strategy: discrete crossover performed better.

The following parameters showed almost no significant
difference in performance across their values: initial x range,
initial sigma values (x and y) and crossover scope.
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Fig. 5. Importance of parameters and best values

We ran the algorithm one more time with the best found
parameters, which are listed in Table 3. The average fitness
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over generations is shown in Figure 6. We then plugged the
x (-1) and y (approximately 0) of the resulting individual into
our function and its value was 15 (formula 7).

TABLE III
BEST PARAMETERS
Parameter Values
Number of parents 32
Number of offspring 64
Number of generations 1000
Estimate function range (-1, 15)
Init x range (-100, 100)
Init y range (-10, 10)
Init o range 0.3, 1)
Init o, range 0.3, 1)
oG 1
€ 0.05
Evolution strategy ES(u+A)
Crossover strategy DISCRETE
Crossover scope LOCAL
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Fig. 6. Diagram od ES(u, \)

f(=1,0) = (0.5 +10[) "2 + cos(2m — 1 x 0)

1 (7)
+10(|—1+1]4+1)"'=15

IV. DISCUSSION

Based on our research, we confirmed that, as we initially
expected, key parameters like the evolution strategy selection
have a major impact on maximizing performance. Specifically,
the ES(u + A) strategy proved more effective than other
variants.

We also confirmed that the function depends more heavily
on the y-values, making the y-range parameter highly impor-
tant, while the x-range showed little influence, just as we had
predicted.

On the other hand, we were surprised by the importance of
the number of parents and offspring, higher values clearly led



to better results. In contrast, parameters like sigma-x, sigma-
y, and various epsilon (mutation) settings showed almost no
significant effect on performance.

When we plugged the optimized x and y values into the
objective function, we achieved results very close to our
initially estimated global maximum.

Overall, we consider our research a success.

V. CONCLUSION

We successfully implemented the evolution strategy algo-
rithm and found the best combinations of its parameters. From
the results it is clear that the parameters that made the most
difference are evolution strategy, crossover strategy and initial
y range. Among the parameter combinations for which the av-
erage fitness of the best individual was 1, the majority use the
ES(p+ A) evolution strategy, the average crossover strategy,
and a (-10, 10) range for y. Using the best parameters, we get
the global maximum of our function, with the value of 15.
Overall, by performing the series of experiments, we showed
the power of ES in finding extremes of complicated functions
and documented the effects of algorithm’s parameters as well.
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