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Abstract - This paper presents the design and implementation of an 
AI-based educational assistant aimed at supporting university 
students in their learning process. The system utilizes Retrieval-
Augmented Generation (RAG) [1] to provide personalized guidance 
and encourage active learning through questions and exploration 
rather than supplying direct answers. Technical implementation 
focuses on a dynamic chat interface combining modern AI models 
[2], vector databases for retrieval, and advanced prompt engineering 
strategies. Preliminary observations based on simulated interactions 
suggest that the tutoring approach encourages deeper engagement 
and critical reasoning. This aligns with findings from prior research 
indicating that AI systems promoting active student reflection can 
lead to improved learning outcomes compared to direct-answer 
systems [6], [7]. Future improvements aim to include features such 
as knowledge gap identification, adaptation to the student's current 
understanding level, and curriculum-aware guidance. 

Keywords - AI tutor, RAG, personalized education, interactive 
learning, knowledge retrieval 

I.  INTRODUCTION  
Artificial Intelligence (AI) is increasingly transforming the 

educational landscape, offering new tools for student support 
and knowledge acquisition [2]. Traditional AI systems in 
education often rely on static responses or direct-answer models, 
which limit the student's engagement and critical thinking. This 
paper introduces a novel AI-based tutoring assistant designed to 
enhance learning through active participation. The system 
leverages Retrieval-Augmented Generation (RAG) [1] to ensure 
responses are grounded in approved course materials and to 
encourage students to reflect, reason, and gradually construct 
their knowledge with AI support. The main goals of the project 
are to design an AI tutor that stimulates critical thinking instead 
of rote memorization, to implement a curriculum-aligned 
retrieval framework, and to create an adaptive, interactive 
environment that motivates deeper engagement with course 
content. Additionally, the project evaluates the impact of the 
tutoring approach on learning outcomes compared to traditional 
direct-answer systems. Future developments aim to incorporate 
personalization based on individual learning progress. 

II. RELATED WORK 
Standard AI educational systems typically provide 

immediate answers, which, while efficient, often undermine the 
student's problem-solving skills. Retrieval-Augmented 
Generation models have recently been employed in knowledge-
intensive tasks to enhance factual correctness and adaptability 
[1]. However, the application of RAG combined with interactive 

tutoring strategies remains limited. Studies such as "Socratic 
Tutoring Strategies for AI Systems" [6] demonstrated that 
systems guiding students through questions lead to greater 
engagement and deeper understanding. Additionally, "Learning 
with OpenAI Codex: Student Outcomes in Programming Tasks" 
[7] showed that guided hint-based tutoring improves problem-
solving skills compared to direct-answer methods. 

Although previous studies have demonstrated the 
effectiveness of Socratic questioning and guided tutoring 
approaches [6], [7], the integration of Retrieval-Augmented 
Generation with personalized, curriculum-aware student 
interaction remains underexplored. Existing systems focus on 
direct content delivery. Therefore, this project aims to bridge this 
gap by combining RAG-based retrieval with dynamic tutoring 
strategies specifically designed for university education. 

III. SYSTEM DESIGN 
The AI-tutor is realised as a Retrieval-Augmented 

Generation (RAG) pipeline with clearly separated 
responsibilities (Fig. 1). The components are orchestrated by a 
low-code workflow engine (implemented in Flowise, although 
the design is platform-agnostic). The following modules 
constitute the core architecture: 

A. Memory Layer  
This module maintains conversational context across 

multiple dialogue turns. Memory retention is critical to 
providing personalized, coherent interactions, especially when 
students build upon previous questions. Each user input is 
appended to a session-specific memory buffer that is managed 
through Flowise nodes, ensuring that historical context is 
correctly injected into subsequent retrievals and prompt 
formulations [2], [8]. 

B. Retriever  
Educational materials are embedded using OpenAI’s text-

embedding-3-small model, generating dense vector 
representations of course content. These embeddings are 
indexed into a Pinecone vector database under the namespace 
book. For retrieval, Top-K similarity search is applied, typically 
fetching 4 nearest documents based on cosine similarity, 
calculated as:  

𝑠(𝑞, 𝑑) = 𝑐𝑜𝑠(𝑒! , 𝑒") =
𝑒! ∙ 𝑒"

∥ 𝑒! ∥∥ 𝑒" ∥
 

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 99



where 𝑒! and 𝑒"are the query and document embeddings, 
respectively. 

The use of Pinecone enables scalable and efficient semantic 
search across large knowledge bases, allowing real-time 
retrieval even with growing datasets. 

C. RAG Controller  
The Retrieval-Augmented Generation (RAG) Controller 

orchestrates the pipeline by merging the retrieved documents 
with the user’s query into an augmented prompt. This hybrid 
mechanism ensures that the language model’s output remains 
grounded in validated academic content, thereby enhancing 
factual reliability and maintaining alignment with the course 
curriculum. 

D. Generation Engine  
OpenAI GPT models are employed within LLM nodes to 

synthesize answers from retrieved context. Rather than 
outputting direct solutions, the generation process emphasizes 
Socratic questioning and scaffolding: guiding students to 
discover answers through exploration and reasoning. Prompt 
templates strategically encourage elaboration, reflection, and 
multiple-step thinking. 

E. Factual Consistency Validator 
To minimize the risk of inaccurate or unsupported outputs, 

the system implements a lightweight consistency validation 
mechanism. Specifically, it generates multiple candidate 
responses and performs cross-verification using semantic 
similarity metrics. If the outputs diverge beyond a predefined 
threshold (e.g., cosine similarity < 0.8 between paraphrased 
answers), the system initiates a fallback procedure that prompts 
the user to clarify or rephrase the query. This internal 
verification step reinforces the factual integrity of the AI tutor’s 
responses, particularly in cases where retrieved content from the 
top-K documents may be insufficient or ambiguous. 

F. Adaptive Tutor Logic 
The system architecture includes a framework for adaptive 

dialogue flow based on student interaction patterns. Although 
full behavioral interpretation is not yet implemented, the design 
supports future extensions where the tutor could adjust 
responses based on indicators such as keywords, uncertainty 
expressions, or request types. For instance, confident input could 
trigger advanced content, while hesitation may prompt 
additional guidance. This adaptability is currently a conceptual 
feature intended to support personalization in later system 
versions. 

G. Interface Layer 
The system interface is built using the native Flowise web 

frontend, a low-code platform for configuring conversational AI 
pipelines. It enables rapid prototyping and integration of key 
components such as memory, retrieval, and LLMs. The backend 
exposes RESTful endpoints (e.g., /chat), allowing integration 
with platforms like Telegram or Microsoft Teams. While the 
current interface supports core interaction and testing, it may be 
replaced in the future by a custom React-based UI for enhanced 
scalability and usability. 

 
Figure 1.  System Architecture of the Personalized AI Tutor 

IV.  IMPLEMENTATION 
The AI tutoring assistant is implemented using a modular 

low-code architecture built in Flowise, chosen for its flexibility, 
rapid prototyping capabilities, and visual workflow 
orchestration [2]. Each major function of the system is 
represented as an independent node, enabling maintainability, 
extensibility, and easy debugging during development. 

• Embedding Educational Content: The educational 
materials were embedded into dense vector 
representations using OpenAI’s text-embedding-3-
small model [2], producing 768-dimensional vectors. 
The choice of this model was driven by its balance 
between performance, embedding quality, and cost-
efficiency compared to larger embedding models. These 
vectors are stored in Pinecone, a scalable and 
production-grade vector database [10], selected for its 
ability to perform real-time semantic searches with low-
latency retrieval even as the dataset grows. 

• Retrieval Mechanism: Similarity search is based on 
Top-K cosine distance retrieval. For each query 
submitted by a student, the retriever fetches the four 
most semantically relevant documents. Cosine 
similarity was chosen as the metric due to its established 
effectiveness in embedding spaces where magnitude is 
less important than orientation [5]. Maintaining a top-K 
threshold of 4 strikes a balance between retrieval 
precision and prompt size, preventing information 
overload while ensuring contextual relevance. 

• RAG Management and Prompt Construction: The RAG 
Manager aggregates the retrieved documents and 
augments them with the current user query and relevant 
conversational memory. This prompt construction 
strategy ensures that the generative model's responses 
are grounded in validated educational content, thereby 
enhancing factual reliability and maintaining 
curriculum alignment [1]. The decision to dynamically 
combine retrieval results at query time, rather than at 
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indexing time, increases system flexibility and allows 
seamless incorporation of updated or newly added 
course materials. 

• Generative Engine (LLM Node): The augmented 
prompt is passed to OpenAI's GPT-4o-2024-04 model 
[2]. Temperature is set at 0.7 to encourage a moderate 
degree of creativity without sacrificing factual 
consistency. The maximum output token limit of 512 
ensures concise and manageable responses. GPT-4o 
was selected for its improved multi-turn coherence and 
factual grounding capabilities compared to earlier 
models [4]. 

• Factual Consistency Validator Implementation: To 
improve factual reliability, the system incorporates a 
lightweight factual consistency validator. This 
component generates two alternative responses and 
evaluates their semantic alignment using cosine 
similarity. If the similarity score falls below a threshold 
of 0.8, the system interprets this as a potential 
inconsistency and withholds a definitive answer, instead 
prompting the user to rephrase or clarify the query [5]. 
This mechanism adds an additional layer of factual 
control, reducing the likelihood of generating 
unsupported or misleading content. 

• Frontend and User Interface: The current frontend is 
implemented using the built-in Flowise interface, which 
enables low-code configuration of conversational 
agents and interaction pipelines. While visually 
minimalistic, the interface allows real-time engagement 
with the system and supports token-by-token response 
streaming, providing a smooth and interactive chat 
experience. This setup has proven sufficient for 
academic prototyping and practical validation of the AI 
tutor's core functionalities. 

• Backend and API Exposure: The backend workflow, 
orchestrated in Flowise, exposes a RESTful API 
endpoint (/chat), enabling future integration with 
external platforms such as Moodle, Microsoft Teams, or 
Slack [3]. This API-driven design ensures platform-
agnostic deployment potential. 

• Containerization and Deployment: The application is 
deployed using Docker, which ensures reproducibility 
and simplifies setup across different environments. 
Flowise, the central orchestration engine, is 
containerized, allowing the entire pipeline—including 
memory management, retrieval, and response 
generation—to run consistently across platforms. 
External services such as OpenAI APIs and Pinecone 
are accessed remotely and do not require local 
deployment. This approach supports modular 
development and provides a practical foundation for 
further integration and scalability. 

V. EVALUATION 
The preliminary evaluation of the AI tutor was conducted 

through a series of simulated student interactions using 
representative queries from university-level mathematics, 

telecommunications, and computer science courses. The 
primary goals of the evaluation were to assess the system’s 
ability to maintain conversational coherence, provide 
curriculum-aligned responses, stimulate critical thinking, and 
ensure factual consistency in the delivered content. 

Coherence and Context Management: Throughout multi-
turn conversations, the Memory Layer consistently preserved 
dialogue history, enabling the system to reference prior 
exchanges coherently. This behaviour corresponds with findings 
from prior research emphasizing the role of effective context 
maintenance in AI-supported educational environments [6]. 

Retrieval and Relevance: The Retriever demonstrated a high 
degree of retrieval relevance, consistently returning documents 
closely aligned with the user’s queries. The use of dense 
semantic search techniques, as described in [9], contributed to 
the system's ability to select contextually appropriate supporting 
materials. 

Guided Reasoning and Student Engagement: The 
Generation Engine emphasized Socratic questioning, 
scaffolding, and elaborative prompting rather than providing 
direct answers. This strategy aligns with educational 
methodologies that highlight the benefits of guided discovery 
learning to enhance student comprehension and retention [6], 
[8]. 

Factual Consistency Assurance: A consistency verification 
mechanism was employed to enhance factual reliability. The 
system generated multiple candidate responses and evaluated 
their semantic similarity. In cases where significant divergence 
was identified (cosine similarity < 0.8), the system prompted 
users to rephrase or clarify their queries, thereby minimizing the 
risk of inaccurate information propagation [5]. 

 Observations and Considerations: As this evaluation was 
conducted through simulated interactions, the findings are 
indicative but not conclusive. Real-world experimental 
validation with diverse student populations remains necessary to 
fully verify the system's educational impact. Additionally, 
opportunities exist to refine the system's handling of ambiguous 
and interdisciplinary queries by enhancing retrieval strategies 
and memory context management. 

In conclusion, the initial evaluation suggests that the AI tutor 
effectively maintains dialogue coherence, ensures factual 
grounding, fosters critical thinking, and provides interactive 
performance suitable for educational deployment. Future 
empirical studies will be essential to substantiate these findings 
under practical learning conditions. 

VI. FUTURE WORK 
Building on the promising outcomes of the initial evaluation, 

several avenues for future development are envisioned to 
enhance the adaptability and pedagogical effectiveness of the AI 
tutoring system. 

A key direction involves implementing dynamic adaptation 
to the student's current level of understanding. By analysing 
prior interactions and responses, the tutor could adjust the 
difficulty and depth of questions, progressively tailoring its 
guidance to the learner’s individual trajectory. 
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Another anticipated enhancement is the development of a 
targeted assignment generation module. This feature would 
enable the tutor to offer exercises and problem sets that 
correspond to the student's identified strengths and weaknesses, 
fostering structured and personalized knowledge reinforcement. 

Additionally, the introduction of a screening and 
performance tracking mechanism is proposed. Periodic analysis 
of student input could support long-term progress monitoring, 
early detection of conceptual gaps, and more precise, 
individualized feedback. 

Curriculum-aware timing is also being considered. The AI 
tutor may synchronize its instructional content with the student's 
current academic calendar position—e.g., avoiding the 
introduction of material beyond the current week of 
instruction—to support effective pacing and reduce cognitive 
overload. 

Further technical improvements are planned for the Retrieval 
and Memory Layers. Incorporating methods such as Dense 
Passage Retrieval (DPR) [9] could enhance retrieval accuracy, 
while refined memory mechanisms may enable long-term 
tracking across subjects and sessions. 

Finally, research into real-time sentiment analysis and the 
application of Reinforcement Learning from Human Feedback 
(RLHF) [7] could support continuous optimization of tutoring 
strategies based on user behaviour and engagement signals. 

Collectively, these potential enhancements aim to evolve the 
AI tutor into a robust, curriculum-aware, and student-cantered 
platform for delivering personalized learning support in diverse 
educational settings. 

VII. CONCLUSION 
This paper presented the design and preliminary evaluation 

of a personalized AI tutoring assistant for university education, 
based on the Retrieval-Augmented Generation (RAG) 
framework. The system integrates a modular architecture 
comprising memory management, semantic retrieval, 
curriculum-grounded prompt augmentation, and factual 
consistency assurance mechanisms. 

Preliminary observations indicate that the tutor successfully 
fosters reflective reasoning, supports student engagement, and 

maintains factual accuracy in responses. Through the strategic 
use of Socratic dialogue, adaptive scaffolding, and dynamic 
retrieval, the AI tutor moves beyond traditional direct-answer 
systems, aligning with best practices in educational AI design 
[6], [8]. 

While initial results are promising, formal empirical 
validation remains a priority for future research. Several 
potential enhancements, such as student-level adaptation, 
targeted assignment generation, performance monitoring, and 
semester-aligned curriculum pacing, have been outlined to 
further personalize and improve the learning experience. 

Overall, the proposed AI tutoring assistant demonstrates the 
feasibility and potential benefits of leveraging advanced 
retrieval and generation techniques to support personalized, 
curriculum-aware, and interactive education in higher learning 
environments. 
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