
 Design and Implementation of a Personalized AI
Tutor for University Education Using RAG

Diana Ryzhkova1, Gregor Rozinaj1

1 Faculty of Electrical Engineering and Information Technology, Slovak University of Technology,
Ilkovičova 3, 812 19 Bratislava, Slovakia

ryzhkova.diasichka@gmail.com

Abstract - This paper presents the design and implementation of an
AI-based educational assistant aimed at supporting university
students in their learning process. The system utilizes Retrieval-
Augmented Generation (RAG) [1] to provide personalized guidance
and encourage active learning through questions and exploration
rather than supplying direct answers. Technical implementation
focuses on a dynamic chat interface combining modern AI models
[2], vector databases for retrieval, and advanced prompt engineering
strategies. Preliminary observations based on simulated interactions
suggest that the tutoring approach encourages deeper engagement
and critical reasoning. This aligns with findings from prior research
indicating that AI systems promoting active student reflection can
lead to improved learning outcomes compared to direct-answer
systems [6], [7]. Future improvements aim to include features such
as knowledge gap identification, adaptation to the student's current
understanding level, and curriculum-aware guidance.

Keywords - AI tutor, RAG, personalized education, interactive
learning, knowledge retrieval

I. INTRODUCTION
Artificial Intelligence (AI) is increasingly transforming the

educational landscape, offering new tools for student support
and knowledge acquisition [2]. Traditional AI systems in
education often rely on static responses or direct-answer models,
which limit the student's engagement and critical thinking. This
paper introduces a novel AI-based tutoring assistant designed to
enhance learning through active participation. The system
leverages Retrieval-Augmented Generation (RAG) [1] to ensure
responses are grounded in approved course materials and to
encourage students to reflect, reason, and gradually construct
their knowledge with AI support. The main goals of the project
are to design an AI tutor that stimulates critical thinking instead
of rote memorization, to implement a curriculum-aligned
retrieval framework, and to create an adaptive, interactive
environment that motivates deeper engagement with course
content. Additionally, the project evaluates the impact of the
tutoring approach on learning outcomes compared to traditional
direct-answer systems. Future developments aim to incorporate
personalization based on individual learning progress.

II. RELATED WORK
Standard AI educational systems typically provide

immediate answers, which, while efficient, often undermine the
student's problem-solving skills. Retrieval-Augmented
Generation models have recently been employed in knowledge-
intensive tasks to enhance factual correctness and adaptability
[1]. However, the application of RAG combined with interactive

tutoring strategies remains limited. Studies such as "Socratic
Tutoring Strategies for AI Systems" [6] demonstrated that
systems guiding students through questions lead to greater
engagement and deeper understanding. Additionally, "Learning
with OpenAI Codex: Student Outcomes in Programming Tasks"
[7] showed that guided hint-based tutoring improves problem-
solving skills compared to direct-answer methods.

Although previous studies have demonstrated the
effectiveness of Socratic questioning and guided tutoring
approaches [6], [7], the integration of Retrieval-Augmented
Generation with personalized, curriculum-aware student
interaction remains underexplored. Existing systems focus on
direct content delivery. Therefore, this project aims to bridge this
gap by combining RAG-based retrieval with dynamic tutoring
strategies specifically designed for university education.

III. SYSTEM DESIGN
The AI-tutor is realised as a Retrieval-Augmented

Generation (RAG) pipeline with clearly separated
responsibilities (Fig. 1). The components are orchestrated by a
low-code workflow engine (implemented in Flowise, although
the design is platform-agnostic). The following modules
constitute the core architecture:

A. Memory Layer
This module maintains conversational context across

multiple dialogue turns. Memory retention is critical to
providing personalized, coherent interactions, especially when
students build upon previous questions. Each user input is
appended to a session-specific memory buffer that is managed
through Flowise nodes, ensuring that historical context is
correctly injected into subsequent retrievals and prompt
formulations [2], [8].

B. Retriever
Educational materials are embedded using OpenAI’s text-

embedding-3-small model, generating dense vector
representations of course content. These embeddings are
indexed into a Pinecone vector database under the namespace
book. For retrieval, Top-K similarity search is applied, typically
fetching 4 nearest documents based on cosine similarity,
calculated as:

𝑠(𝑞, 𝑑) = 𝑐𝑜𝑠(𝑒! , 𝑒") =
𝑒! ∙ 𝑒"

∥ 𝑒! ∥∥ 𝑒" ∥

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 99

where 𝑒! and 𝑒"are the query and document embeddings,
respectively.

The use of Pinecone enables scalable and efficient semantic
search across large knowledge bases, allowing real-time
retrieval even with growing datasets.

C. RAG Controller
The Retrieval-Augmented Generation (RAG) Controller

orchestrates the pipeline by merging the retrieved documents
with the user’s query into an augmented prompt. This hybrid
mechanism ensures that the language model’s output remains
grounded in validated academic content, thereby enhancing
factual reliability and maintaining alignment with the course
curriculum.

D. Generation Engine
OpenAI GPT models are employed within LLM nodes to

synthesize answers from retrieved context. Rather than
outputting direct solutions, the generation process emphasizes
Socratic questioning and scaffolding: guiding students to
discover answers through exploration and reasoning. Prompt
templates strategically encourage elaboration, reflection, and
multiple-step thinking.

E. Factual Consistency Validator
To minimize the risk of inaccurate or unsupported outputs,

the system implements a lightweight consistency validation
mechanism. Specifically, it generates multiple candidate
responses and performs cross-verification using semantic
similarity metrics. If the outputs diverge beyond a predefined
threshold (e.g., cosine similarity < 0.8 between paraphrased
answers), the system initiates a fallback procedure that prompts
the user to clarify or rephrase the query. This internal
verification step reinforces the factual integrity of the AI tutor’s
responses, particularly in cases where retrieved content from the
top-K documents may be insufficient or ambiguous.

F. Adaptive Tutor Logic
The system architecture includes a framework for adaptive

dialogue flow based on student interaction patterns. Although
full behavioral interpretation is not yet implemented, the design
supports future extensions where the tutor could adjust
responses based on indicators such as keywords, uncertainty
expressions, or request types. For instance, confident input could
trigger advanced content, while hesitation may prompt
additional guidance. This adaptability is currently a conceptual
feature intended to support personalization in later system
versions.

G. Interface Layer
The system interface is built using the native Flowise web

frontend, a low-code platform for configuring conversational AI
pipelines. It enables rapid prototyping and integration of key
components such as memory, retrieval, and LLMs. The backend
exposes RESTful endpoints (e.g., /chat), allowing integration
with platforms like Telegram or Microsoft Teams. While the
current interface supports core interaction and testing, it may be
replaced in the future by a custom React-based UI for enhanced
scalability and usability.

Figure 1. System Architecture of the Personalized AI Tutor

IV. IMPLEMENTATION
The AI tutoring assistant is implemented using a modular

low-code architecture built in Flowise, chosen for its flexibility,
rapid prototyping capabilities, and visual workflow
orchestration [2]. Each major function of the system is
represented as an independent node, enabling maintainability,
extensibility, and easy debugging during development.

• Embedding Educational Content: The educational
materials were embedded into dense vector
representations using OpenAI’s text-embedding-3-
small model [2], producing 768-dimensional vectors.
The choice of this model was driven by its balance
between performance, embedding quality, and cost-
efficiency compared to larger embedding models. These
vectors are stored in Pinecone, a scalable and
production-grade vector database [10], selected for its
ability to perform real-time semantic searches with low-
latency retrieval even as the dataset grows.

• Retrieval Mechanism: Similarity search is based on
Top-K cosine distance retrieval. For each query
submitted by a student, the retriever fetches the four
most semantically relevant documents. Cosine
similarity was chosen as the metric due to its established
effectiveness in embedding spaces where magnitude is
less important than orientation [5]. Maintaining a top-K
threshold of 4 strikes a balance between retrieval
precision and prompt size, preventing information
overload while ensuring contextual relevance.

• RAG Management and Prompt Construction: The RAG
Manager aggregates the retrieved documents and
augments them with the current user query and relevant
conversational memory. This prompt construction
strategy ensures that the generative model's responses
are grounded in validated educational content, thereby
enhancing factual reliability and maintaining
curriculum alignment [1]. The decision to dynamically
combine retrieval results at query time, rather than at

100 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

indexing time, increases system flexibility and allows
seamless incorporation of updated or newly added
course materials.

• Generative Engine (LLM Node): The augmented
prompt is passed to OpenAI's GPT-4o-2024-04 model
[2]. Temperature is set at 0.7 to encourage a moderate
degree of creativity without sacrificing factual
consistency. The maximum output token limit of 512
ensures concise and manageable responses. GPT-4o
was selected for its improved multi-turn coherence and
factual grounding capabilities compared to earlier
models [4].

• Factual Consistency Validator Implementation: To
improve factual reliability, the system incorporates a
lightweight factual consistency validator. This
component generates two alternative responses and
evaluates their semantic alignment using cosine
similarity. If the similarity score falls below a threshold
of 0.8, the system interprets this as a potential
inconsistency and withholds a definitive answer, instead
prompting the user to rephrase or clarify the query [5].
This mechanism adds an additional layer of factual
control, reducing the likelihood of generating
unsupported or misleading content.

• Frontend and User Interface: The current frontend is
implemented using the built-in Flowise interface, which
enables low-code configuration of conversational
agents and interaction pipelines. While visually
minimalistic, the interface allows real-time engagement
with the system and supports token-by-token response
streaming, providing a smooth and interactive chat
experience. This setup has proven sufficient for
academic prototyping and practical validation of the AI
tutor's core functionalities.

• Backend and API Exposure: The backend workflow,
orchestrated in Flowise, exposes a RESTful API
endpoint (/chat), enabling future integration with
external platforms such as Moodle, Microsoft Teams, or
Slack [3]. This API-driven design ensures platform-
agnostic deployment potential.

• Containerization and Deployment: The application is
deployed using Docker, which ensures reproducibility
and simplifies setup across different environments.
Flowise, the central orchestration engine, is
containerized, allowing the entire pipeline—including
memory management, retrieval, and response
generation—to run consistently across platforms.
External services such as OpenAI APIs and Pinecone
are accessed remotely and do not require local
deployment. This approach supports modular
development and provides a practical foundation for
further integration and scalability.

V. EVALUATION
The preliminary evaluation of the AI tutor was conducted

through a series of simulated student interactions using
representative queries from university-level mathematics,

telecommunications, and computer science courses. The
primary goals of the evaluation were to assess the system’s
ability to maintain conversational coherence, provide
curriculum-aligned responses, stimulate critical thinking, and
ensure factual consistency in the delivered content.

Coherence and Context Management: Throughout multi-
turn conversations, the Memory Layer consistently preserved
dialogue history, enabling the system to reference prior
exchanges coherently. This behaviour corresponds with findings
from prior research emphasizing the role of effective context
maintenance in AI-supported educational environments [6].

Retrieval and Relevance: The Retriever demonstrated a high
degree of retrieval relevance, consistently returning documents
closely aligned with the user’s queries. The use of dense
semantic search techniques, as described in [9], contributed to
the system's ability to select contextually appropriate supporting
materials.

Guided Reasoning and Student Engagement: The
Generation Engine emphasized Socratic questioning,
scaffolding, and elaborative prompting rather than providing
direct answers. This strategy aligns with educational
methodologies that highlight the benefits of guided discovery
learning to enhance student comprehension and retention [6],
[8].

Factual Consistency Assurance: A consistency verification
mechanism was employed to enhance factual reliability. The
system generated multiple candidate responses and evaluated
their semantic similarity. In cases where significant divergence
was identified (cosine similarity < 0.8), the system prompted
users to rephrase or clarify their queries, thereby minimizing the
risk of inaccurate information propagation [5].

 Observations and Considerations: As this evaluation was
conducted through simulated interactions, the findings are
indicative but not conclusive. Real-world experimental
validation with diverse student populations remains necessary to
fully verify the system's educational impact. Additionally,
opportunities exist to refine the system's handling of ambiguous
and interdisciplinary queries by enhancing retrieval strategies
and memory context management.

In conclusion, the initial evaluation suggests that the AI tutor
effectively maintains dialogue coherence, ensures factual
grounding, fosters critical thinking, and provides interactive
performance suitable for educational deployment. Future
empirical studies will be essential to substantiate these findings
under practical learning conditions.

VI. FUTURE WORK
Building on the promising outcomes of the initial evaluation,

several avenues for future development are envisioned to
enhance the adaptability and pedagogical effectiveness of the AI
tutoring system.

A key direction involves implementing dynamic adaptation
to the student's current level of understanding. By analysing
prior interactions and responses, the tutor could adjust the
difficulty and depth of questions, progressively tailoring its
guidance to the learner’s individual trajectory.

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 101

Another anticipated enhancement is the development of a
targeted assignment generation module. This feature would
enable the tutor to offer exercises and problem sets that
correspond to the student's identified strengths and weaknesses,
fostering structured and personalized knowledge reinforcement.

Additionally, the introduction of a screening and
performance tracking mechanism is proposed. Periodic analysis
of student input could support long-term progress monitoring,
early detection of conceptual gaps, and more precise,
individualized feedback.

Curriculum-aware timing is also being considered. The AI
tutor may synchronize its instructional content with the student's
current academic calendar position—e.g., avoiding the
introduction of material beyond the current week of
instruction—to support effective pacing and reduce cognitive
overload.

Further technical improvements are planned for the Retrieval
and Memory Layers. Incorporating methods such as Dense
Passage Retrieval (DPR) [9] could enhance retrieval accuracy,
while refined memory mechanisms may enable long-term
tracking across subjects and sessions.

Finally, research into real-time sentiment analysis and the
application of Reinforcement Learning from Human Feedback
(RLHF) [7] could support continuous optimization of tutoring
strategies based on user behaviour and engagement signals.

Collectively, these potential enhancements aim to evolve the
AI tutor into a robust, curriculum-aware, and student-cantered
platform for delivering personalized learning support in diverse
educational settings.

VII. CONCLUSION
This paper presented the design and preliminary evaluation

of a personalized AI tutoring assistant for university education,
based on the Retrieval-Augmented Generation (RAG)
framework. The system integrates a modular architecture
comprising memory management, semantic retrieval,
curriculum-grounded prompt augmentation, and factual
consistency assurance mechanisms.

Preliminary observations indicate that the tutor successfully
fosters reflective reasoning, supports student engagement, and

maintains factual accuracy in responses. Through the strategic
use of Socratic dialogue, adaptive scaffolding, and dynamic
retrieval, the AI tutor moves beyond traditional direct-answer
systems, aligning with best practices in educational AI design
[6], [8].

While initial results are promising, formal empirical
validation remains a priority for future research. Several
potential enhancements, such as student-level adaptation,
targeted assignment generation, performance monitoring, and
semester-aligned curriculum pacing, have been outlined to
further personalize and improve the learning experience.

Overall, the proposed AI tutoring assistant demonstrates the
feasibility and potential benefits of leveraging advanced
retrieval and generation techniques to support personalized,
curriculum-aware, and interactive education in higher learning
environments.

ACKNOWLEDGMENT
This paper was supported by NEXT (ERASMUS-EDU-

2023-CBHE-STRAND-2), CYB-FUT (ERASMUS+), and
EULiST (ERASMUS).

REFERENCES
[1] P. Lewis, E. Perez, A. Karpukhin, et al., "Retrieval-Augmented

Generation for Knowledge-Intensive NLP Tasks," 2020.
[2] OpenAI, "GPT-4 Technical Report," 2023.
[3] J. Smith, "Socratic Dialogue and AI: Enhancing Learning through

Questioning," Journal of Educational AI, 2022.
[4] T. Brown, "Scaling Laws for Neural Language Models," 2020.
[5] P. Rajpurkar, J. Zhang, "Assessing the Factual Accuracy of Generative

Models," 2023.
[6] A. Author, B. Author, "Socratic Tutoring Strategies for AI Systems,"

2022.
[7] C. Author, D. Author, "Learning with OpenAI Codex: Student Outcomes

in Programming Tasks," 2023.
[8] D. Rus et al., "AI-Assisted Education: From Theory to Practice," Science

Robotics, 2021.
[9] K. Guu et al., "REALM: Retrieval-Augmented Language Model Pre-

Training," ICML 2020.
[10] Pinecone Systems, "Pinecone Documentation: Scalable Vector Database

for Machine Learning," 2024

102 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

