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Abstract - This paper addresses the potential of Large Language 
Models (LLMs) to support students in the educational process by 
providing personalized assistance, explanations, and examples. 
LLMs are used by many students, but they often lack up-to-date 
information or specific knowledge on the subjects they need. This 
paper looks at how using Retrieval-Augmented Generation (RAG) 
can help by linking language models to external sources of 
information so answers can be more accurate and relevant. The 
proposed solution is implemented using the LangChain 
framework, which simplifies integration with vector databases, 
embedding models, and custom prompt workflows. The system is 
designed as a modular architecture with specialized agents that 
respond to different types of student queries. This approach 
demonstrates how LLMs can be enhanced to better learning 
experience. 
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I.  INTRODUCTION 
Nowadays, the use of LLMs is becoming increasingly 

common among students at all levels of education. These models 
are commonly used to assist with tasks ranging from simple 
questions and assignments to explaining complex concepts. 
LLMs offer significant potential to enhance the educational 
process, but their limitations pose important challenges. LLMs 
may lack domain-specific knowledge, rely on outdated 
information, or even produce inaccurate responses. Such 
shortcomings can negatively affect the learning experience, 
especially when students rely on these models for studying 
critical or specialized topics. 

This paper presents an exploration of integrating LLM with 
a RAG architecture implemented using the LangChain 
framework. Similar ideas have been explored in recent research. 
In [1], the authors describe a university chatbot that uses RAG 
to answer curriculum-related questions by combining LLMs 
with institution-specific data. Their system shows how retrieval 
can help reduce hallucinations in educational settings. Another 
example is presented in [2], where a tutoring chatbot is built for 
university students using open-source tools. It retrieves course-
specific materials to support learning and emphasizes 
transparency in the generation process. The system described in 
this paper follows a similar method, having a modular agent-
based design adapted to different types of student queries for a 
particular subject. 

II. UNDERSTANDING THE ROLE OF LLMS IN EDUCATION 
[3] LLMs are designed to understand and generate human 

language, making them suitable for a wide range of natural 
language processing tasks. However, their use in education 

brings with it both opportunities and limitations that need to be 
considered. A single question asked in slightly different ways 
may receive completely different responses. This inconsistency 
is caused by several factors: LLMs rely on probabilistic 
generation, they lack an understanding of factual correctness, 
and they are limited to the static data available at the time of 
training. As a result, their answers can be out of date or even 
misleading, especially when it comes to subject-specific or 
curriculum-relevant content. 

One approach to improving LLM results is fine-tuning, in 
which the model is retrained on specialized data. However, fine-
tuning is expensive, requires large, curated datasets, and 
increases the risk of overfitting or drifting away from general 
reasoning abilities. It is also inflexible — updating even a small 
portion of knowledge requires retraining the model. 

Instead, a more efficient and scalable solution is retrieval 
augmentation generation (RAG). RAG keeps the original LLM 
intact but enriches it with external knowledge during inference. 
By extracting relevant documents from a trusted source (e.g. 
lecture notes or curated examples), we can guide the model to 
generate responses based on real, context-specific information. 
This provides greater accuracy, content relevance, and more 
control over what the model can say without changing the 
underlying LLM. 

III. RETRIEVAL-AUGMENTED GENERATION ARCHITECTURE 

 
Figure 1.  RAG architecture 

[4] Retrieval-Augmented Generation (RAG) is a modern 
approach that extends the capabilities of large language models 
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by combining them with real-time information retrieval systems. 
Figure 1 illustrates how RAG works — instead of relying solely 
on internal knowledge acquired during training, the system 
searches for relevant documents or data from external sources at 
the time of the query. These retrieved materials are then fed, 
along with the original question, to the language model, which 
uses them to generate a more accurate and informed answer. 

This architecture is particularly valuable in educational 
applications, where up-to-date and context-specific information 
is essential. Traditional LLMs may provide answers based on 
general knowledge, but they often lack the precision needed for 
course-specific tasks or recent subject developments. RAG 
solves this by connecting the model to curated academic sources, 
ensuring that students receive responses supported by current 
and reliable content. Also, it increases the credibility of AI-
generated answers and reduces the risk of misinformation. 

A. Embeddings and Text Chunks 
To make RAG systems work, we need a way to connect user 

questions with the right information stored in documents. This 
is done using embedding models, which are tools that convert 
text into numbers — specifically, into vectors [5]. These vectors 
are mathematical representations of meaning. Texts that have 
similar meanings will have vectors that are close to each other 
in this space. This allows compare a user’s question with many 
document chunks and find the most relevant ones. 

Since language models can't search documents directly, we 
first need to split documents into smaller parts, called chunks. 
These chunks usually have a fixed size — for example, a few 
hundred words — so they are easier to compare and retrieve. 
After splitting, each chunk is passed through the embedding 
model, which converts it into a vector. 

In this system, I used OpenAI’s “text-embedding-ada-002” 
[6] model, which produces vectors with 1536 dimensions. This 
means that each chunk is turned into a long list of 1536 numbers 
that describe its meaning. This model is fast, accurate, and works 
well for a wide range of topics, which makes it a good choice for 
educational applications. Once embeddings are created, it can be 
reused many times without needing to process the text again. 
Thus, using this technique, LLM gets the opportunity to: 

• Match user questions with relevant content, even if 
the question is phrased differently. 

• Be language-independent and can work across 
many subjects and topics. 

However, there are some disadvantages: 

• Some very short or very long fragments may be 
poorly represented. 

• The quality of the matching depends on the quality 
of the fragmentation and the embedding model 
itself. 

• Embedding images and other components 
distinguishable from text is a complex process and 
can make it difficult to obtain the desired context. 

Despite these issues, embedding plays a key role in making 
RAG systems efficient. Once we generate vectors, we need a 

way to store and search them efficiently, and vector databases 
are used for this. 

B. Vector Database and Reranking 
A vector database is a special type of database designed to 

store and search high-dimensional vectors. In this system, I used 
Qdrant [7], an open-source vector database that is fast, scalable, 
and easy to integrate. Qdrant allows to store millions of vectors 
and quickly find the most similar ones to a given query. This is 
done through vector similarity search, which compares the 
user’s question with all the stored document vectors and finds 
the closest matches. 

 
Figure 2.  Vector search with Qdrant [6] 

The number of matches we return is called Top K. For 
example, if K=5, the database will return the 5 most similar 
document chunks. Choosing the right K value depends on the 
use case: 

• Small K (3–5): Better for quick answers where 
precision matters. 

• Large K (10–20): Useful when the question is broad 
or needs more context. 

If K is too small, we might miss some useful information. If 
it’s too large, we might include irrelevant results, which can 
confuse the language model. In most cases, a value between 5 
and 10 works well. 

While Qdrant gives results based only on vector similarity. 
Sometimes, chunks may seem similar in numbers but are not 
actually the most useful for answering the question. To improve 
this, I used Cohere Rerank [8]. Cohere Rerank is a model that 
takes the Top K results from Qdrant and reorders them based on 
how well they answer the user’s question. It scores each result 
by relevance and then sorts them. This helps make sure that the 
best chunk is at the top, improving the final answer quality when 
passed to the LLM. 
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C. Prompting 
Once we have retrieved the most relevant pieces of 

information from the database, we need to pass it to the language 
model with user question. This step is called prompt 
construction, and it plays a key role in getting correct and useful 
answers. However, it’s not enough to just place the context and 
the question together. The language model needs clear 
instructions on how to use the context. Without these 
instructions, it might ignore the provided content or make up 
answers from its own training data. To avoid this, the prompt 
must tell the model: 

• To use only the provided context when answering. 

• To avoid guessing or inventing facts. 

• To say “I don’t know” if the context does not 
contain enough information. 

By including these types of instructions in the prompt, we 
guide the model to stay grounded in the retrieved data. This is 
very important in the educational setting, where accuracy and 
trust are critical. 

IV. LANGCHAIN AND SYSTEM ARCHITECTURE 
To implement the RAG architecture and integrate vector 

databases and LLM models more easily, I used the LangChain 
[9] framework. 

A. LangChain 
LangChain is a Python-based open-source library designed 

specifically for building applications that use large language 
models. It makes easier to connect all the parts of a RAG system 
— including embedding models, vector stores like Qdrant, and 
LLMs like GPT. Instead of writing every step from scratch, 
LangChain provides ready-to-use components. 

One of the most useful features of LangChain is the ability 
to create chains. Chains allow us to build logic on how the 
answer will be generated, what tools will be used and what 
context we should use. 

B. System Architecture 
To make the application more flexible and able to handle 

different types of student questions, system use architecture 
based on the concept of agents [10]. Each agent is responsible 
for a specific task or type of question, and they all work together 
under one central system. 

As shown in Figure 3, at the center of the architecture is the 
Main Tool Agent. This agent receives the student's input and 
plays a key role in analyzing it, preparing the prompt, and 
deciding which specialized agent should be activated. The 
quality of the prompt in this stage is very important — it must 
include clear instructions and enough context to help the selected 
agent understand what kind of task is expected. The Main Tool 
Agent doesn’t answer the question directly. Instead, it acts like 
a dispatcher that routes the request to one of the five specialized 
agents, depending on the type of question. 

Around this main agent, there are five specialized agents. 
Each one focuses on a different area of support, such as 
explaining definitions, solving calculation tasks, or summarizing 

content. When a student asks a question, the main agent analyzes 
it and activates the most relevant agent — or combines outputs 
if needed. This setup makes the system more dynamic and 
scalable. If needed, new agents can be added later without 
changing the whole architecture. All communication between 
agents is handled through LangChain, which helps manage the 
flow of data and results. 

 
Figure 3.  High-level system architecture 

C. Subject Relevance Agent 
The first step in the processing question is handled by the 

Subject Relevance Agent. Its main role is to check whether the 
student’s question is related to the subject covered by the system. 
This helps avoid unnecessary processing and ensures that 
students only receive answers that are connected to the course 
content. To do this, the agent uses a special set of documents 
stored in the vector database. These documents contain a list of 
all topics included in the subject, with short descriptions and a 
few keywords. Each topic is stored as a separate chunk, usually 
representing one page in the original document. This design 
makes it easy for the system to quickly match a question to a 
specific topic. 

When a student submits a question, the Subject Relevance 
Agent retrieves the most similar chunks using vector search. It 
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then checks if the similarity score is high enough to consider the 
question relevant. If it finds a good match, the question 
continues through the system. If not, it is passed to the Outside 
Subject Agent. The Outside Subject Agent is a fallback tool that 
returns a short message indicating that the question is not related 
to this subject. 

D. Thoery Agent 
The Theory Agent is designed to handle questions that 

require more theoretical explanations. This agent focuses on 
providing clear and accurate answers based on course theory — 
such as definitions, principles, or explanations of key concepts. 
To support this, the Theory Agent retrieves context from a 
separate vector collection that contains only documents from 
lecture materials. These documents are preprocessed into 
chunks, each representing a focused topic or section from the 
lectures. This improves the quality of search results by ensuring 
that only relevant theoretical content is used when building the 
answer. 

When a question is routed to the Theory Agent, it performs 
a vector search in the lecture-based collection and retrieves the 
top-matching chunks. These chunks are then used to build a 
custom prompt designed specifically for theory-related answers. 
This targeted prompt helps the model focus on accurate, 
relevant, and course-specific information rather than generating 
generic explanations from its training data. 

E. Full Explain Agent 
The Full Explain Agent is designed for situations where 

students are just starting to learn about a topic and don’t yet 
know what to ask in detail. This typically happens when a 
student begins a conversation with a question like: “Can you 
explain this topic to me?”. In such cases, the student doesn't need 
only a definition or a complex example — they need a balanced 
overview that includes both the basic theory and a simple 
example to illustrate it. 

This agent works by retrieving context from both lecture 
materials and example collections. It helps the model generate 
an answer that is complete but not overwhelming. It’s especially 
useful for students who don’t yet have specific questions and are 
just trying to build a foundation. 

F. Example Agent 
The Example Agent is designed to do the opposite of the 

Theory Agent. While the Theory Agent explains concepts in 
detail, the Example Agent focuses on providing practical 
examples that show how something is used or solved in practice. 
This is especially helpful for students who learn better by seeing 
real use cases or worked-out solutions rather than long 
explanations. To make this possible, the Example Agent 
retrieves context from a dedicated collection that contains only 
examples. Prompt ensures that the model responds in a direct, 
example-based style, without mixing in unrelated theory or 
abstract explanations. By keeping theory and examples separate, 
in the database and in the agents, the system can respond more 
accurately based on what the student needs. 

G. Follow-up Question Agent 
The Follow-up Question Agent is responsible for handling 

all the questions that don’t clearly fall into the categories covered 
by other agents. These are often follow-up questions, general 
comments, or informal requests that appear during the flow of a 
conversation. In these cases, the goal is not to retrieve new 
content or process a specific task, it’s to keep the conversation 
natural and helpful. 

Unlike the other agents, this one usually doesn’t call any 
retriever tools. Instead, it works with the summarized 
conversation history. This gives the agent enough context to 
understand what the user has already seen and how the response 
should be adapted. The prompt for this agent is tailored to 
conversational support. This helps maintain a smooth user 
experience, especially in longer sessions where the student is 
building understanding over time. It also ensures that the system 
doesn’t return irrelevant or overly complex answers when a 
simple conversational reply is enough. The Follow-up Question 
Agent acts like a smart assistant that supporting the student, 
guiding the discussion, and keeping the interaction focused and 
helpful even when a question isn’t clearly defined. 
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