
Utilization of Large Language Models in the
Educational Process

Kyrylo Masaltsev, Marek Vančo

Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
xmasaltsev@stuba.sk, marek_vanco@stuba.sk

Abstract - This paper addresses the potential of Large Language
Models (LLMs) to support students in the educational process by
providing personalized assistance, explanations, and examples.
LLMs are used by many students, but they often lack up-to-date
information or specific knowledge on the subjects they need. This
paper looks at how using Retrieval-Augmented Generation (RAG)
can help by linking language models to external sources of
information so answers can be more accurate and relevant. The
proposed solution is implemented using the LangChain
framework, which simplifies integration with vector databases,
embedding models, and custom prompt workflows. The system is
designed as a modular architecture with specialized agents that
respond to different types of student queries. This approach
demonstrates how LLMs can be enhanced to better learning
experience.

Keywords - LLM; LangChain; RAG; Agents; Educational

I. INTRODUCTION
Nowadays, the use of LLMs is becoming increasingly

common among students at all levels of education. These models
are commonly used to assist with tasks ranging from simple
questions and assignments to explaining complex concepts.
LLMs offer significant potential to enhance the educational
process, but their limitations pose important challenges. LLMs
may lack domain-specific knowledge, rely on outdated
information, or even produce inaccurate responses. Such
shortcomings can negatively affect the learning experience,
especially when students rely on these models for studying
critical or specialized topics.

This paper presents an exploration of integrating LLM with
a RAG architecture implemented using the LangChain
framework. Similar ideas have been explored in recent research.
In [1], the authors describe a university chatbot that uses RAG
to answer curriculum-related questions by combining LLMs
with institution-specific data. Their system shows how retrieval
can help reduce hallucinations in educational settings. Another
example is presented in [2], where a tutoring chatbot is built for
university students using open-source tools. It retrieves course-
specific materials to support learning and emphasizes
transparency in the generation process. The system described in
this paper follows a similar method, having a modular agent-
based design adapted to different types of student queries for a
particular subject.

II. UNDERSTANDING THE ROLE OF LLMS IN EDUCATION
[3] LLMs are designed to understand and generate human

language, making them suitable for a wide range of natural
language processing tasks. However, their use in education

brings with it both opportunities and limitations that need to be
considered. A single question asked in slightly different ways
may receive completely different responses. This inconsistency
is caused by several factors: LLMs rely on probabilistic
generation, they lack an understanding of factual correctness,
and they are limited to the static data available at the time of
training. As a result, their answers can be out of date or even
misleading, especially when it comes to subject-specific or
curriculum-relevant content.

One approach to improving LLM results is fine-tuning, in
which the model is retrained on specialized data. However, fine-
tuning is expensive, requires large, curated datasets, and
increases the risk of overfitting or drifting away from general
reasoning abilities. It is also inflexible — updating even a small
portion of knowledge requires retraining the model.

Instead, a more efficient and scalable solution is retrieval
augmentation generation (RAG). RAG keeps the original LLM
intact but enriches it with external knowledge during inference.
By extracting relevant documents from a trusted source (e.g.
lecture notes or curated examples), we can guide the model to
generate responses based on real, context-specific information.
This provides greater accuracy, content relevance, and more
control over what the model can say without changing the
underlying LLM.

III. RETRIEVAL-AUGMENTED GENERATION ARCHITECTURE

Figure 1. RAG architecture

[4] Retrieval-Augmented Generation (RAG) is a modern
approach that extends the capabilities of large language models

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 107

mailto:xmasaltsev@stuba.sk
mailto:marek_vanco@stuba.sk
mailto:xmasaltsev@stuba.sk
mailto:marek_vanco@stuba.sk

by combining them with real-time information retrieval systems.
Figure 1 illustrates how RAG works — instead of relying solely
on internal knowledge acquired during training, the system
searches for relevant documents or data from external sources at
the time of the query. These retrieved materials are then fed,
along with the original question, to the language model, which
uses them to generate a more accurate and informed answer.

This architecture is particularly valuable in educational
applications, where up-to-date and context-specific information
is essential. Traditional LLMs may provide answers based on
general knowledge, but they often lack the precision needed for
course-specific tasks or recent subject developments. RAG
solves this by connecting the model to curated academic sources,
ensuring that students receive responses supported by current
and reliable content. Also, it increases the credibility of AI-
generated answers and reduces the risk of misinformation.

A. Embeddings and Text Chunks
To make RAG systems work, we need a way to connect user

questions with the right information stored in documents. This
is done using embedding models, which are tools that convert
text into numbers — specifically, into vectors [5]. These vectors
are mathematical representations of meaning. Texts that have
similar meanings will have vectors that are close to each other
in this space. This allows compare a user’s question with many
document chunks and find the most relevant ones.

Since language models can't search documents directly, we
first need to split documents into smaller parts, called chunks.
These chunks usually have a fixed size — for example, a few
hundred words — so they are easier to compare and retrieve.
After splitting, each chunk is passed through the embedding
model, which converts it into a vector.

In this system, I used OpenAI’s “text-embedding-ada-002”
[6] model, which produces vectors with 1536 dimensions. This
means that each chunk is turned into a long list of 1536 numbers
that describe its meaning. This model is fast, accurate, and works
well for a wide range of topics, which makes it a good choice for
educational applications. Once embeddings are created, it can be
reused many times without needing to process the text again.
Thus, using this technique, LLM gets the opportunity to:

• Match user questions with relevant content, even if
the question is phrased differently.

• Be language-independent and can work across
many subjects and topics.

However, there are some disadvantages:

• Some very short or very long fragments may be
poorly represented.

• The quality of the matching depends on the quality
of the fragmentation and the embedding model
itself.

• Embedding images and other components
distinguishable from text is a complex process and
can make it difficult to obtain the desired context.

Despite these issues, embedding plays a key role in making
RAG systems efficient. Once we generate vectors, we need a

way to store and search them efficiently, and vector databases
are used for this.

B. Vector Database and Reranking
A vector database is a special type of database designed to

store and search high-dimensional vectors. In this system, I used
Qdrant [7], an open-source vector database that is fast, scalable,
and easy to integrate. Qdrant allows to store millions of vectors
and quickly find the most similar ones to a given query. This is
done through vector similarity search, which compares the
user’s question with all the stored document vectors and finds
the closest matches.

Figure 2. Vector search with Qdrant [6]

The number of matches we return is called Top K. For
example, if K=5, the database will return the 5 most similar
document chunks. Choosing the right K value depends on the
use case:

• Small K (3–5): Better for quick answers where
precision matters.

• Large K (10–20): Useful when the question is broad
or needs more context.

If K is too small, we might miss some useful information. If
it’s too large, we might include irrelevant results, which can
confuse the language model. In most cases, a value between 5
and 10 works well.

While Qdrant gives results based only on vector similarity.
Sometimes, chunks may seem similar in numbers but are not
actually the most useful for answering the question. To improve
this, I used Cohere Rerank [8]. Cohere Rerank is a model that
takes the Top K results from Qdrant and reorders them based on
how well they answer the user’s question. It scores each result
by relevance and then sorts them. This helps make sure that the
best chunk is at the top, improving the final answer quality when
passed to the LLM.

108 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

C. Prompting
Once we have retrieved the most relevant pieces of

information from the database, we need to pass it to the language
model with user question. This step is called prompt
construction, and it plays a key role in getting correct and useful
answers. However, it’s not enough to just place the context and
the question together. The language model needs clear
instructions on how to use the context. Without these
instructions, it might ignore the provided content or make up
answers from its own training data. To avoid this, the prompt
must tell the model:

• To use only the provided context when answering.

• To avoid guessing or inventing facts.

• To say “I don’t know” if the context does not
contain enough information.

By including these types of instructions in the prompt, we
guide the model to stay grounded in the retrieved data. This is
very important in the educational setting, where accuracy and
trust are critical.

IV. LANGCHAIN AND SYSTEM ARCHITECTURE
To implement the RAG architecture and integrate vector

databases and LLM models more easily, I used the LangChain
[9] framework.

A. LangChain
LangChain is a Python-based open-source library designed

specifically for building applications that use large language
models. It makes easier to connect all the parts of a RAG system
— including embedding models, vector stores like Qdrant, and
LLMs like GPT. Instead of writing every step from scratch,
LangChain provides ready-to-use components.

One of the most useful features of LangChain is the ability
to create chains. Chains allow us to build logic on how the
answer will be generated, what tools will be used and what
context we should use.

B. System Architecture
To make the application more flexible and able to handle

different types of student questions, system use architecture
based on the concept of agents [10]. Each agent is responsible
for a specific task or type of question, and they all work together
under one central system.

As shown in Figure 3, at the center of the architecture is the
Main Tool Agent. This agent receives the student's input and
plays a key role in analyzing it, preparing the prompt, and
deciding which specialized agent should be activated. The
quality of the prompt in this stage is very important — it must
include clear instructions and enough context to help the selected
agent understand what kind of task is expected. The Main Tool
Agent doesn’t answer the question directly. Instead, it acts like
a dispatcher that routes the request to one of the five specialized
agents, depending on the type of question.

Around this main agent, there are five specialized agents.
Each one focuses on a different area of support, such as
explaining definitions, solving calculation tasks, or summarizing

content. When a student asks a question, the main agent analyzes
it and activates the most relevant agent — or combines outputs
if needed. This setup makes the system more dynamic and
scalable. If needed, new agents can be added later without
changing the whole architecture. All communication between
agents is handled through LangChain, which helps manage the
flow of data and results.

Figure 3. High-level system architecture

C. Subject Relevance Agent
The first step in the processing question is handled by the

Subject Relevance Agent. Its main role is to check whether the
student’s question is related to the subject covered by the system.
This helps avoid unnecessary processing and ensures that
students only receive answers that are connected to the course
content. To do this, the agent uses a special set of documents
stored in the vector database. These documents contain a list of
all topics included in the subject, with short descriptions and a
few keywords. Each topic is stored as a separate chunk, usually
representing one page in the original document. This design
makes it easy for the system to quickly match a question to a
specific topic.

When a student submits a question, the Subject Relevance
Agent retrieves the most similar chunks using vector search. It

Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025 109

then checks if the similarity score is high enough to consider the
question relevant. If it finds a good match, the question
continues through the system. If not, it is passed to the Outside
Subject Agent. The Outside Subject Agent is a fallback tool that
returns a short message indicating that the question is not related
to this subject.

D. Thoery Agent
The Theory Agent is designed to handle questions that

require more theoretical explanations. This agent focuses on
providing clear and accurate answers based on course theory —
such as definitions, principles, or explanations of key concepts.
To support this, the Theory Agent retrieves context from a
separate vector collection that contains only documents from
lecture materials. These documents are preprocessed into
chunks, each representing a focused topic or section from the
lectures. This improves the quality of search results by ensuring
that only relevant theoretical content is used when building the
answer.

When a question is routed to the Theory Agent, it performs
a vector search in the lecture-based collection and retrieves the
top-matching chunks. These chunks are then used to build a
custom prompt designed specifically for theory-related answers.
This targeted prompt helps the model focus on accurate,
relevant, and course-specific information rather than generating
generic explanations from its training data.

E. Full Explain Agent
The Full Explain Agent is designed for situations where

students are just starting to learn about a topic and don’t yet
know what to ask in detail. This typically happens when a
student begins a conversation with a question like: “Can you
explain this topic to me?”. In such cases, the student doesn't need
only a definition or a complex example — they need a balanced
overview that includes both the basic theory and a simple
example to illustrate it.

This agent works by retrieving context from both lecture
materials and example collections. It helps the model generate
an answer that is complete but not overwhelming. It’s especially
useful for students who don’t yet have specific questions and are
just trying to build a foundation.

F. Example Agent
The Example Agent is designed to do the opposite of the

Theory Agent. While the Theory Agent explains concepts in
detail, the Example Agent focuses on providing practical
examples that show how something is used or solved in practice.
This is especially helpful for students who learn better by seeing
real use cases or worked-out solutions rather than long
explanations. To make this possible, the Example Agent
retrieves context from a dedicated collection that contains only
examples. Prompt ensures that the model responds in a direct,
example-based style, without mixing in unrelated theory or
abstract explanations. By keeping theory and examples separate,
in the database and in the agents, the system can respond more
accurately based on what the student needs.

G. Follow-up Question Agent
The Follow-up Question Agent is responsible for handling

all the questions that don’t clearly fall into the categories covered
by other agents. These are often follow-up questions, general
comments, or informal requests that appear during the flow of a
conversation. In these cases, the goal is not to retrieve new
content or process a specific task, it’s to keep the conversation
natural and helpful.

Unlike the other agents, this one usually doesn’t call any
retriever tools. Instead, it works with the summarized
conversation history. This gives the agent enough context to
understand what the user has already seen and how the response
should be adapted. The prompt for this agent is tailored to
conversational support. This helps maintain a smooth user
experience, especially in longer sessions where the student is
building understanding over time. It also ensures that the system
doesn’t return irrelevant or overly complex answers when a
simple conversational reply is enough. The Follow-up Question
Agent acts like a smart assistant that supporting the student,
guiding the discussion, and keeping the interaction focused and
helpful even when a question isn’t clearly defined.

ACKNOWLEDGMENT
This paper was supported by DISIC (09I05-03-V2), NEXT

(ERASMUS-EDU-2023-CBHE-STRAND-2), EULiST
(ERASMUS), CYB-FUT (ERASMUS+), InteRViR (VEGA
1/0605/23).

REFERENCES
[1] J. Salminen et al., “Using Cipherbot: An Exploratory Analysis of

Student Interaction with an LLM-Based Educational Chatbot,” in
Proceedings of the Eleventh ACM Conference on Learning @ Scale, in
L@S ’24. New York, NY, USA: Association for Computing Machinery,
Jul. 2024, pp. 279–283. doi: 10.1145/3657604.3664690.

[2] Z. Chu et al., “LLM Agents for Education: Advances and
Applications,” Mar. 14, 2025, arXiv: arXiv:2503.11733. doi:
10.48550/arXiv.2503.11733.

[3] S. Ganesh and R. Sahlqvist, “Exploring Patterns in LLM Integration - A
study on architectural considerations and design patterns in LLM
dependent applications,” Oct. 2024, Accessed: May 07, 2025. [Online].
Available: https://gupea.ub.gu.se/handle/2077/83680

[4] “Retrieval-Augmented Generation (RAG) and LLM Integration | IEEE
Conference Publication | IEEE Xplore.” Accessed: May 07, 2025.
[Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10845308

[5] A. Mansurova, A. Mansurova, and A. Nugumanova, “QA-RAG:
Exploring LLM Reliance on External Knowledge,” Big Data and
Cognitive Computing, vol. 8, no. 9, Art. no. 9, Sep. 2024, doi:
10.3390/bdcc8090115.

[6] “Vector embeddings - OpenAI API.” Accessed: May 07, 2025.
[Online]. Available: https://platform.openai.com

[7] “Understanding Vector Search in Qdrant - Qdrant.” Accessed: May 07,
2025. [Online]. Available:
https://qdrant.tech/documentation/overview/vector-search/

[8] “An Overview of Cohere’s Rerank Model,” Cohere. Accessed: May 07,
2025. [Online]. Available: https://docs.cohere.com/v2/docs/rerank-
overview

[9] V. Mavroudis, “LangChain v0.3,” Dec. 2024. doi:
10.20944/preprints202411.0566.v1.

[10] G. D. A. E. Aquino et al., “From RAG to Multi-Agent Systems: A
Survey of Modern Approaches in LLM Development,” Feb. 06, 2025,
Computer Science and Mathematics. doi:
10.20944/preprints202502.0406.v1.

110 Redžúr 2025 | 17th International Workshop on Multimedia Information and Communication Technologies | 22 May 2025

